A245193 Smallest prime having in decimal representation A136333(n) as suffix.
11, 3, 7, 19, 11, 13, 17, 19, 31, 233, 37, 139, 71, 73, 277, 79, 191, 193, 97, 199, 2111, 113, 1117, 3119, 131, 4133, 137, 139, 1171, 173, 4177, 179, 191, 193, 197, 199, 311, 313, 317, 1319, 331, 2333, 337, 2339, 2371, 373, 2377, 379, 3391, 2393, 397, 1399
Offset: 1
Examples
. n | a(n) | A136333(n) . ------+---------+----------- . 10 | 233 | 33 . 11 | 37 | 37 . 12 | 139 | 39 . 13 | 71 | 71 . 14 | 73 | 73 . 15 | 277 | 77 . 16 | 79 | 79 . 17 | 191 | 91 . 18 | 193 | 93 . 19 | 97 | 97 . 20 | 199 | 99 . 21 | 2111 | 111 . 22 | 113 | 113 . 23 | 1117 | 117 . 24 | 3119 | 119 . 25 | 131 | 131 . 26 | 4133 | 133 . 27 | 137 | 137 . 28 | 139 | 139 . 29 | 1171 | 171 . 30 | 173 | 173 .
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
import Data.List (isSuffixOf); import Data.Function (on) a245193 n = head [p | p <- a000040_list, (isSuffixOf `on` show) (a136333 n) p]
-
PARI
isok(m) = my(d=digits(m)); apply(x->gcd(x, 10), d) == vector(#d, k, 1); \\ A136333 f(m) = my(p=nextprime(m), s=10^#Str(m)); while ((p-m) % s, p = nextprime(p+1)); p; lista(nn) = apply(x->f(x), select(isok, [1..nn])); lista(1000) \\ Michel Marcus, Feb 25 2022
Comments