cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A091633 Primes having only {1, 3, 7, 9} as digits.

Original entry on oeis.org

3, 7, 11, 13, 17, 19, 31, 37, 71, 73, 79, 97, 113, 131, 137, 139, 173, 179, 191, 193, 197, 199, 311, 313, 317, 331, 337, 373, 379, 397, 719, 733, 739, 773, 797, 911, 919, 937, 971, 977, 991, 997, 1117, 1171, 1193, 1319, 1373, 1399, 1733, 1777, 1913, 1931, 1933
Offset: 1

Views

Author

Enoch Haga, Jan 26 2004

Keywords

Comments

Some primes of sufficient length might be termed DNA primes if the sequence of digits 1,3,7,9 in any order happens to be an appropriate analog of the DNA bases A, G, C, T. It would be interesting to know if it is possible for any DNA sequence to match a DNA prime.

Crossrefs

Subsequence of A136333, A245193, and A030096.
A091871 gives prime index.
Cf. A010051.

Programs

  • Haskell
    a091633 n = a091633_list !! (n-1)
    a091633_list = filter ((== 1) . a010051') a136333_list
    -- Reinhard Zumkeller, Jul 17 2014
  • Mathematica
    Select[Flatten[Table[FromDigits/@Tuples[{1,3,7,9},n],{n,4}]],PrimeQ] (* Harvey P. Dale, Jun 26 2015 *)

Formula

Select primes having digits 1, 3, 7, 9 only.
a(n) = A000040(A091871(n)). - R. J. Mathar, Aug 29 2018

A136333 Numbers containing only digits coprime to 10 in their decimal representation.

Original entry on oeis.org

1, 3, 7, 9, 11, 13, 17, 19, 31, 33, 37, 39, 71, 73, 77, 79, 91, 93, 97, 99, 111, 113, 117, 119, 131, 133, 137, 139, 171, 173, 177, 179, 191, 193, 197, 199, 311, 313, 317, 319, 331, 333, 337, 339, 371, 373, 377, 379, 391, 393, 397, 399, 711, 713, 717, 719, 731
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 26 2008

Keywords

Comments

Numbers containing digits 1,3,7,9 only, or, numbers written in base 4 (cf. A007090) with digits mapped by: 0->1, 1->3, 2->7 and 3->9. - Reinhard Zumkeller, Jul 17 2014

Crossrefs

Cf. A007090, A091633 (primes), A245193.

Programs

  • Haskell
    import Data.List (intersect)
    a136333 n = a136333_list !! (n-1)
    a136333_list = filter (null . intersect "024568" . show) [1..]
    -- Reinhard Zumkeller, Jul 17 2014
    
  • Mathematica
    fQ[n_] := Block[{s = {1, 3, 7, 9}}, Union[Join[s, IntegerDigits@ n]] == s]; Select[ Range@ 1000, fQ] (* or *)
    depth = 3; FromDigits@# & /@ FlattenAt[ Table[ Tuples[{1, 3, 7, 9}, n], {n, depth}], {#} & /@ Range[depth]] (* Robert G. Wilson v, Jul 02 2014 *)
  • PARI
    isok(m) = my(d=digits(m)); apply(x->gcd(x, 10), d) == vector(#d, k, 1); \\ Michel Marcus, Feb 25 2022

Formula

Sum_{n>=1} 1/a(n) = 2.395867871130444522329053889312125689319669370758630349552737883715872077555... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 15 2024

A338715 Smallest prime ending with decimal expansion of n, for n relatively prime to 10.

Original entry on oeis.org

11, 3, 7, 19, 11, 13, 17, 19, 421, 23, 127, 29, 31, 233, 37, 139, 41, 43, 47, 149, 151, 53, 157, 59, 61, 163, 67, 269, 71, 73, 277, 79, 181, 83, 487, 89, 191, 193, 97, 199, 101, 103, 107, 109, 2111, 113, 1117, 3119, 3121, 1123, 127, 1129, 131, 4133, 137, 139, 2141, 2143, 5147, 149, 151, 1153, 157
Offset: 1

Views

Author

N. J. A. Sloane, Nov 11 2020

Keywords

Comments

a(n) exists by Dirichlet's theorem.

Crossrefs

Cf. A045572, A105888 (base 2 equivalent), A258190.
See A245193, A337834, A338716 for other versions.

Programs

  • Maple
    N:= 100: # for a(1) to a(N)
    V:= Vector(N):
    count:= 0:
    for n from 1 while count < N do
      if igcd(n,10)=1 then
        count:= count+1;
        d:= ilog10(n)+1;
        for x from n by 10^d do
          if isprime(x) then V[count]:= x; break fi
        od
      fi
    od:
    convert(V,list); # Robert Israel, Nov 11 2020
  • Python
    from sympy import isprime
    def a(n):
        ending = 2*n - 1 + (n+1)//4 * 2 # A045572
        i, pow10 = ending, 10**len(str(ending))
        while not isprime(i): i += pow10
        return i
    print([a(n) for n in range(1, 64)]) # Michael S. Branicky, Nov 03 2021

Extensions

More terms from Robert Israel, Nov 11 2020

A338716 Smallest prime ending with decimal expansion of n, for n equal to 5 or relatively prime to 10.

Original entry on oeis.org

11, 3, 5, 7, 19, 11, 13, 17, 19, 421, 23, 127, 29, 31, 233, 37, 139, 41, 43, 47, 149, 151, 53, 157, 59, 61, 163, 67, 269, 71, 73, 277, 79, 181, 83, 487, 89, 191, 193, 97, 199, 101, 103, 107, 109, 2111, 113, 1117, 3119, 3121, 1123, 127, 1129, 131, 4133, 137, 139, 2141, 2143, 5147, 149, 151, 1153, 157
Offset: 1

Views

Author

N. J. A. Sloane, Nov 11 2020

Keywords

Comments

Included for completeness. This is A338715 with 5 adjoined. See that entry for further information.
a(n) exists by Dirichlet's theorem.

Crossrefs

See A245193, A337834, A338715 for other versions.

Extensions

More terms from Robert Israel, Nov 11 2020
Showing 1-4 of 4 results.