cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245199 Numbers n where phi(n) and tau(n) are perfect squares.

Original entry on oeis.org

1, 8, 10, 34, 57, 74, 85, 125, 185, 202, 219, 394, 451, 456, 489, 505, 514, 546, 570, 629, 640, 679, 680, 802, 985, 1000, 1026, 1057, 1154, 1285, 1354, 1365, 1387, 1417, 1480, 1717, 1752, 1938, 2005, 2016, 2047, 2176, 2190, 2340, 2457, 2509, 2565, 2594, 2649
Offset: 1

Views

Author

Reinhard Muehlfeld, Jul 13 2014

Keywords

Comments

Numbers n such that A000005(n) and A000010(n) are perfect squares.
Intersection of A036436 and A039770. - Michel Marcus, Jul 15 2014

Examples

			8 is in the sequence because phi(8) = 4, tau(8) = 4, and 4 is a perfect square.
12 is not in the sequence because tau(12) = 6 is not a square.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) uses numtheory; issqr(phi(n)) and issqr(tau(n)) end proc:
    select(filter, [$1..1000]); # Robert Israel, Jul 27 2014
  • Mathematica
    fQ[n_] := IntegerQ@ Sqrt@ EulerPhi[n] && IntegerQ@ Sqrt@ DivisorSigma[0, n]; Select[ Range@ 3000, fQ] (* Robert G. Wilson v, Jul 21 2014 *)
    Select[Range[3000],AllTrue[{Sqrt[EulerPhi[#]],Sqrt[DivisorSigma[0, #]]}, IntegerQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 01 2018 *)
  • PARI
    isok(n) = issquare(numdiv(n)) && issquare(eulerphi(n)); \\ Michel Marcus, Jul 15 2014
    
  • Python
    from sympy import totient, divisor_count
    from gmpy2 import is_square
    [n for n in range(1,10**4) if is_square(int(divisor_count(n))) and is_square(int(totient(n)))] # Chai Wah Wu, Aug 04 2014