cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245235 Repeat 2^(n*(n+1)/2) n+1 times.

Original entry on oeis.org

1, 2, 2, 8, 8, 8, 64, 64, 64, 64, 1024, 1024, 1024, 1024, 1024, 32768, 32768, 32768, 32768, 32768, 32768, 2097152, 2097152, 2097152, 2097152, 2097152, 2097152, 2097152, 268435456, 268435456, 268435456, 268435456, 268435456, 268435456, 268435456, 268435456
Offset: 0

Views

Author

Paul Curtz, Jul 14 2014

Keywords

Comments

For a(n), the successive exponents of 2 are 0, 1, 1, 3, 3, 3,... = A057944(n).

Examples

			n+1 times repeated 2^(n*(n+1)/2)= 1, 2, 8, 64, 1024,... = A139685(n).
By the formula: a(0)=1/1=1, a(1)=2/1=2, a(2)=4/2=2, a(3)=8/1=8, a(4)=16/2=8,...
As triangle:
   1,
   2,    2,
   8,    8,    8,
  64,   64,   64,   64,
1024, 1024, 1024, 1024, 1024,
etc.
Row sums: 1, 4, 24, 256,... = A095340.
		

Crossrefs

Programs

  • Mathematica
    Table[2^(n*(n+1)/2), {n, 0, 7}, {n+1}] // Flatten (* Jean-François Alcover, Jul 15 2014 *)
  • Python
    from math import isqrt
    def A245235(n): return 1<<((m:=isqrt(n+1<<3)-1>>1)*(m+1)>>1) # Chai Wah Wu, Dec 17 2024

Formula

a(n) = 2^n/A059268(n).
T(n, k) = 2^(n*(n+1)/2), 0 <= k <= n. - Michel Marcus, Jul 17 2014