A245236 Numbers n such that the Fibonacci number F(n) satisfies F(n)^2+1 = f1*f2 where f1, f2 are prime Fibonacci numbers.
4, 5, 6, 9, 12, 15, 45, 432, 570
Offset: 1
Examples
4 is a term because F(4)^2+1 = F(3)*F(5)=> 3^2+1 = 2*5; 5 is a term because F(5)^2+1 = F(3)*F(7)=> 5^2+1 = 2*13; 6 is a term because F(6)^2+1 = F(5)*F(7)=> 8^2+1 = 5*13; 9 is a term because F(9)^2+1 = F(7)*F(11)=> 34^2+1 = 13*89; 12 is a term because F(12)^2+1 = F(11)*F(13)=> 144^2+1 = 89*233; 15 is a term because F(13)*F(17)=> 610^2+1 = 233* 1597.
Programs
-
Maple
with(combinat,fibonacci):with(numtheory):nn:=1000:for n from 1 to nn do:if (type(fibonacci(n+1),prime) and type(fibonacci(n-1),prime) and irem(n,2)=0) or (type(fibonacci(n+2),prime) and type(fibonacci(n-2),prime) and irem(n,2)=1) then print(n):else fi:od: # Alternative: filter:= proc(n) uses combinat; if n::even then isprime(n-1) and isprime(n+1) and isprime(fibonacci(n-1)) and isprime(fibonacci(n+1)) else isprime(n-2) and isprime(n+2) and isprime(fibonacci(n-2)) and isprime(fibonacci(n+2)) fi end proc: select(filter, [$1..10^4]); # Robert Israel, Jul 14 2014
Comments