cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A248516 n^2+1 divided by its largest prime factor.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 10, 5, 2, 1, 2, 5, 10, 1, 2, 1, 10, 25, 2, 1, 26, 5, 10, 1, 2, 1, 10, 5, 2, 17, 26, 25, 10, 13, 2, 1, 10, 85, 2, 1, 58, 5, 50, 13, 2, 29, 130, 5, 2, 41, 2, 5, 10, 1, 34, 1, 250, 5, 2, 13, 2, 5, 10, 17, 2, 1, 10, 125, 2, 169, 2, 85, 130, 1, 58
Offset: 1

Views

Author

Michel Lagneau, Jun 18 2015

Keywords

Comments

a(n)=1 iff n^2+1 is prime (see A002496).
Conjecture: The Fibonacci numbers in the sequence are 1, 2, 5, 13, 34, 89, 233, 377, 610, 1597, 4181, 10946, 28657, 75025, 121393, 196418, ... including all of A001519.

Crossrefs

Programs

Formula

a(n) = A002522(n)/A014442(n).
a(n) = A052126(1+n^2). - R. J. Mathar, Jun 18 2015

A281618 Fibonacci numbers F such that all the prime factors of F^2 + 1 are also Fibonacci numbers.

Original entry on oeis.org

1, 2, 3, 5, 8, 34, 144, 610, 1134903170
Offset: 1

Views

Author

Michel Lagneau, Jan 25 2017

Keywords

Comments

The corresponding indices of F are 1 or 2, 3, 4, 5, 6, 9, 12, 15, 45, ... and A245236 is in this sequence.

Examples

			a(9)^2+1 = Fibonacci(45)^2+1 = 1134903170^2+1 = 1288005205276048901 = 433494437 * 2971215073 = Fibonacci(43)*Fibonacci(47).
		

Crossrefs

Programs

  • Maple
    with(numtheory):with(combinat,fibonacci):nn:=100:
    for n from 1 to nn do:
      f:=fibonacci(n)^2+1:x:=factorset(f):n0:=nops(x):it:=0:
        for m from 1 to n0 do:
        c:=x[m]:
        x1:=sqrt(5*c^2-4):x2:=sqrt(5*c^2+4):
        if x1=floor(x1) or x2=floor(x2)
         then
         it:=it+1:
         else
        fi:
    od:
    if it=n0 then print(fibonacci(n)):else fi:od:
  • Mathematica
    With[{s = Rest@ Fibonacci@ Range@ 120}, Select[s, Times @@ Boole@ Map[MemberQ[s, #] &, FactorInteger[#^2 + 1][[All, 1]]] > 0 &]] (* Michael De Vlieger, Jan 27 2017 *)
  • PARI
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8));
    isokf(n) = {my(f = factor(fibonacci(n)^2+1)); for (k=1, #f~, if (!isfib(f[k,1]), return(0));); return(1);}
    for (n=2, 50, if (isokf(n), print1(fibonacci(n), ", "))) \\ Michel Marcus, Jan 28 2017

A245688 Numbers n such that n^2 + 1 is the product of three distinct Fibonacci numbers > 1.

Original entry on oeis.org

47, 99, 123, 322, 843, 2207, 5778, 15075, 15127, 39603, 103682, 271443, 710647, 1860498, 4870847, 12752043, 33385282, 87403803, 228826127, 599074578, 1568397607, 4106118243, 10749957122, 28143753123, 73681302247, 192900153618, 505019158607, 1322157322203
Offset: 1

Views

Author

Michel Lagneau, Jul 29 2014

Keywords

Comments

Conjecture: except the numbers 99 and 15075, all the terms belong to A005248 (bisection of Lucas numbers).
The above conjecture holds for the first 1000 terms. - Jens Kruse Andersen, Aug 10 2014

Examples

			99 is in the sequence because 99^2+1 = 9802 = 2*13*377 where 2, 13 and 377 are three Fibonacci numbers, but 99 is not a Lucas number.
15075 is in the sequence because 15075^2+1 = 13*89*196418 where 13, 89 and 196418 are three Fibonacci numbers, but 15075 is not a Lucas number.
		

Crossrefs

Programs

  • Maple
    with(combinat,fibonacci):with(numtheory):nn:=200:lst:={}:T:=array(1..nn):
       for n from 1 to nn do:
        T[n]:=fibonacci(n):
       od:
         for p from 1 to nn-1 do:
           for q from p+1 to nn-1 do:
              for r from q+1 to nn-1 do:
               f:=T[p]*T[q]*T[r]-1:x:=sqrt(f):
               if x=floor(x)and T[p]<>1
               then
               lst:=lst union {x}:
               else
               fi:
              od:
           od:
         od:
         print(lst):

Formula

Empirical g.f.: x*(9297*x^9-24320*x^8-52*x^7+52*x^3-127*x^2-42*x+47) / (x^2-3*x+1). - Colin Barker, Aug 13 2014

Extensions

Doubtful link, formula and PARI code deleted by Colin Barker, Jul 31 2014

A360107 Numbers k such that sigma_2(Fibonacci(k)^2 + 1) == 0 (mod Fibonacci(k)).

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 15, 19, 21, 25, 27, 31, 41, 45, 49, 81, 85, 129, 133, 135, 139, 357, 361, 429, 431, 433, 435, 447, 451, 507, 511, 567, 569, 571, 573
Offset: 1

Views

Author

Michel Lagneau, Jan 26 2023

Keywords

Examples

			7 is in the sequence because the divisors of Fibonacci(7)^2 + 1 = 13^2 + 1 = 170 are {1, 2, 5, 10, 17, 34, 85, 170}, and 1^2 + 2^2 + 5^2 + 10^2 + 17^2 + 34^2 + 85^2 + 170^2 = 37700 = 13*2900 == 0 (mod 13).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[140],Divisible[DivisorSigma[2,Fibonacci[#]^2+1],Fibonacci[#]]&]
  • PARI
    isok(k) = my(f=fibonacci(k)); sigma(f^2 + 1, 2) % f == 0; \\ Michel Marcus, Jan 26 2023

Extensions

a(24)-a(37) from Daniel Suteu, Jan 27 2023

A245046 Smallest non-Fibonacci number k such that k^2 + F(n)^2 = f1*f2 where F(n) = A000045(n) and f1, f2 are distinct Fibonacci numbers.

Original entry on oeis.org

70, 70, 6, 991, 27, 183, 443, 38, 27, 373
Offset: 1

Views

Author

Michel Lagneau, Jul 16 2014

Keywords

Comments

The sequence is probably finite.
Conjecture : if k exists, the number of solutions non-Fibonacci k of the equation k^2 + F(n)^2 = f1*f2 is finite.
The primes of the sequence are 373, 443 and 991.
If f1<=f2, the new sequence is 70, 70, 6, 4, 12, 183, 443, 38, 27, 373

Examples

			a(1) = a(2) = 70 because 70^2+1 = F(7)*F(14) = 13*377. The number 70 is probably unique.
a(3) = 6 because 6^2+2^2 = F(5)*F(6) = 5*8. But there exists also k = 10 such that 10^2+4 = F(6)*F(7) = 8*13.
a(7) = 443 because 443^2 + 13^2 = F(1)*F(27) = 1*196418.
		

Crossrefs

Programs

  • Maple
    with(combinat,fibonacci):with(numtheory):nn:=200:T:=array(1..nn):
      for i from 1 to nn do:
        T[i]:=fibonacci(i):
      od:
       for n from 1 to 10 do:
         ff:=fibonacci(n):ii:=0:
           for p from 1 to nn-1 while(ii=0)do:
             for q from p+1 to nn-1 while(ii=0)do:
               f:=T[p]*T[q]-ff^2:x:=sqrt(f):x1:=sqrt(5*f+4):x2:=sqrt(5*f-4):
               if f>0 and x=floor(x)
               and x1<>floor(x1) and x2<>floor(x2)
               then
               ii:=1:printf ( "%d %d %d %d \n",n,x,T[p],T[q]):
               else
               fi:
             od:
           od:
        od:
  • PARI
    isfib(n) = {my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8));} \\ from A010056
    isprod(pf) = {sqrpf = sqrtint(pf); ifib = 1; while((fif = fibonacci(ifib)) < sqrpf, if (pf % fif == 0, if (isfib(pf/fif), return (1));); ifib ++;); return (0);}
    a(n) = {k = 1; fsq = fibonacci(n)^2; ok = 0; while (!ok, if (! isfib(k), pf = k^2 + fsq; ok = isprod(pf);); if (! ok, k++);); k;} \\ Michel Marcus, Jul 17 2014

A339315 a(n) is the smallest number k such that k^2+1 divided by its largest prime factor is equal to F(2*n-1) for n > 0, or 0 if no such k exists, where F(n) is the Fibonacci sequence.

Original entry on oeis.org

1, 3, 8, 34, 55, 144, 610, 233, 12166, 2584, 4181, 68260, 46368, 75025, 3917414, 464656, 1346269, 16349962
Offset: 1

Views

Author

Michel Lagneau, Nov 30 2020

Keywords

Comments

a(n) is the smallest number k such that A248516(k) = A001519(n) for n > 0, or 0 if no such k exists, where A001519(n) = F(2*n-1) (bisection of the Fibonacci sequence), with F(n) = A000045(n).
We observe that a(2 + 3m) = A001519(1 + 3m) = A000045(1 + 6m) for m = 2, 3, 4, 5. For n = 6, this property no longer works.
For k > 0, a(3k - 1) is odd, a(3k) and a(3k+1) are even.
We observe that a(n)^2 + 1 is the product of two prime Fibonacci numbers for n = 2, 3, 4, 6, 7.
The first 18 terms of the sequence are Fibonacci numbers, except a(9), a(12), a(15), a(16) and a(18).
The corresponding sequence b(n) = (a(n)^2+1)/ A001519(n) is 2, 5, 13, 89, 89, 233, 1597, 89, 92681, 1597, 1597, 162593, 28657, 28657, 29842993, 160373, 514229. We observe that a majority of terms of b(n) are prime Fibonacci numbers, except b(9), b(12), b(15) and b(16).

Examples

			a(4) = 34 because 34^2 + 1 = 13*89 = 1157, and 1157/89 = 13 = A248516(34) = A001519(4).
A curiosity: a(22) = 1134903170 = F(45) with F(45)^2 + 1 = F(43)*F(47) where F(43) and F(47) are prime Fibonacci numbers.
		

Crossrefs

Programs

  • Maple
    with(numtheory):with(combinat,fibonacci):
    nn:=100:n0:=20:
    for n from 1 to n0 do:
      ii:=0:
      for m from 1 to 10^10 while(ii=0) do:
       x:=m^2+1:y:=factorset(x):n1:=nops(y):
       z:=x/y[n1]:
        if z = fibonacci(2*n-1)
         then
         ii:=1:printf(`%d %d \n`,n,m):
         else
        fi:
      od:
    od:
  • PARI
    a(n) = {my(k=1, f=fibonacci(2*n-1)); while ((k^2+1)/vecmax(factor(k^2+1)[,1]) != f, k++); k;} \\ Michel Marcus, Nov 30 2020

A350707 Numbers m such that all prime factors of m^2+1 are Fibonacci numbers.

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 8, 18, 34, 57, 144, 239, 322, 610, 1134903170
Offset: 1

Views

Author

Michel Lagneau, Mar 27 2022

Keywords

Comments

The Fibonacci numbers in the sequence include 1, 2, 3, 5, 8, 144, 610 and 1134903170.
The sequence includes terms of the form sqrt(f(n) - 1) and sqrt(5 * f(n) - 1), where f(n) = Fibonacci(A281087(n)) * Fibonacci(A281087(n)+2) = A140362(n). - Daniel Suteu, Mar 29 2022

Examples

			57 is in the sequence because 57^2+1 = 2*5^3*13 and 2, 5 and 13 are Fibonacci numbers;
1134903170 = Fibonacci(45) is in the sequence because 1134903170^2+1 = 433494437*2971215073 = Fibonacci(43)*Fibonacci(47).
		

Crossrefs

The sequence contains A281618 and A285282.

Programs

  • Maple
    with(numtheory):
    A005478:={2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497,1066340417491710595814572169, 19134702400093278081449423917}:
    for n from 0 to 11000 do:
       y:=factorset(n^2+1):n0:=nops(y):
       if A005478 intersect y = y
           then
           print(n):
           else
         fi:
    od:
  • PARI
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8));
    isok(m) = my(f=factor(m^2+1)); for (i=1, #f~, if (!isfib(f[i,1]), return(0))); return(1); \\ Michel Marcus, Mar 29 2022
Showing 1-7 of 7 results.