A352290 Numbers m such that the greatest prime factor of m^2 + 1 is a Fibonacci number.
1, 2, 3, 5, 7, 8, 18, 34, 55, 57, 89, 123, 144, 233, 239, 322, 377, 411, 500, 568, 610, 746, 788, 843, 987, 1487, 1542, 1568, 1636, 2207, 2584, 2707, 3173, 3639, 3793, 3804, 3817, 4050, 4181, 4217, 4594, 4662, 5270, 5778, 6107, 6613, 8595, 8972, 10341, 10569
Offset: 1
Keywords
Examples
18 is in the sequence because 18^2 + 1 = 5^2*13 and 13 is a Fibonacci number.
Programs
-
Maple
q:= n-> (t-> ormap(issqr, [t+4, t-4]))(5*max(numtheory[factorset](n^2+1))^2): select(q, [$1..12000])[]; # Alois P. Heinz, Mar 11 2022
-
Mathematica
With[{f = Fibonacci[Range[21]], m = f[[-1]]}, Select[Range[m], MemberQ[f, FactorInteger[#^2 + 1][[-1, 1]]] &]] (* Amiram Eldar, Mar 11 2022 *)
-
PARI
isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)); isok(m) = isfib(vecmax(factor(m^2+1)[,1])); \\ Michel Marcus, Mar 11 2022
Comments