A245243 Triangle, read by rows, defined by T(n,k) = C(n^2 - k^2, n*k - k^2), for k=0..n, n>=0.
1, 1, 1, 1, 3, 1, 1, 28, 10, 1, 1, 455, 495, 35, 1, 1, 10626, 54264, 8008, 126, 1, 1, 324632, 10518300, 4686825, 125970, 462, 1, 1, 12271512, 3190187286, 5586853480, 354817320, 1961256, 1716, 1, 1, 553270671, 1399358844975, 11899700525790, 2254848913647, 25140840660, 30421755, 6435, 1
Offset: 0
Examples
Triangle T(n,k) = C(n^2 - k^2, n*k - k^2) begins: 1; 1, 1; 1, 3, 1; 1, 28, 10, 1; 1, 455, 495, 35, 1; 1, 10626, 54264, 8008, 126, 1; 1, 324632, 10518300, 4686825, 125970, 462, 1; 1, 12271512, 3190187286, 5586853480, 354817320, 1961256, 1716, 1; 1, 553270671, 1399358844975, 11899700525790, 2254848913647, 25140840660, 30421755, 6435, 1; ...
Links
- Paul D. Hanna, Table of n, a(n) for rows 0..30 of flattened triangle.
Programs
-
Mathematica
Table[Binomial[n^2-k^2,n k-k^2],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Jan 06 2019 *)
-
PARI
{T(n,k) = binomial(n^2 - k^2, n*k - k^2)} for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
PARI
{T(n,k) = binomial(n^2,n*k) * binomial(n*k,k^2) / binomial(n^2,k^2)} for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
Formula
T(n,k) = C(n^2, n*k) * C(n*k, k^2) / C(n^2, k^2).
T(n,k) = (n^2 - k^2)! / ( (n^2 - n*k)! * (n*k - k^2)! ).
T(n,k) = ((n+k)*(n-k))! / ( (n*(n-k))! * (k*(n-k))! ).
Comments