cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A323777 Decimal expansion of the root of the equation (1-2*r)^(3-4*r) = (1-r)^(2-2*r) * r^(1-2*r).

Original entry on oeis.org

2, 2, 0, 6, 7, 6, 0, 4, 1, 3, 2, 3, 7, 4, 0, 6, 9, 6, 3, 1, 2, 8, 2, 2, 2, 6, 9, 9, 9, 8, 0, 5, 0, 1, 6, 7, 1, 8, 7, 6, 8, 1, 0, 3, 1, 0, 2, 7, 5, 7, 4, 0, 3, 9, 5, 4, 1, 7, 3, 3, 5, 1, 2, 7, 2, 1, 5, 6, 3, 0, 5, 6, 5, 0, 5, 8, 5, 2, 2, 8, 6, 0, 3, 0, 9, 2, 1, 4, 9, 8, 9, 2, 1, 2, 8, 3, 0, 9, 2, 4, 6, 0, 5, 3, 4, 7
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 27 2019

Keywords

Examples

			0.2206760413237406963128222699980501671876810310275740395417335127215630565...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[r/.FindRoot[(1-2*r)^(3-4*r) == (1-r)^(2-2*r) * r^(1-2*r), {r, 1/3}, WorkingPrecision->250], 10, 200][[1]]

A323773 Decimal expansion of the root of the equation (1-2*r)^(4*r-1) * (1-r)^(1-2*r) = r^(2*r).

Original entry on oeis.org

3, 6, 6, 3, 2, 0, 1, 5, 0, 3, 0, 5, 2, 8, 3, 0, 9, 6, 4, 0, 8, 7, 2, 3, 6, 5, 6, 3, 7, 8, 1, 1, 7, 1, 1, 9, 4, 0, 1, 1, 8, 2, 6, 6, 0, 7, 2, 1, 0, 9, 9, 4, 5, 9, 5, 4, 9, 1, 8, 2, 3, 1, 6, 0, 1, 8, 4, 0, 5, 2, 1, 3, 5, 4, 9, 0, 0, 9, 8, 9, 2, 5, 8, 2, 5, 7, 6, 7, 1, 9, 5, 2, 1, 9, 5, 9, 0, 0, 0, 1, 6, 8, 6, 7, 4, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 27 2019

Keywords

Examples

			0.3663201503052830964087236563781171194011826607210994595491823160184...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[r/.FindRoot[(1-2*r)^(4*r-1) * (1-r)^(1-2*r) == r^(2*r), {r, 1/3}, WorkingPrecision->250], 10, 200][[1]]

A323778 Decimal expansion of the root of the equation (1-r)^(2-2*r) * r^(2*r) = 1-2*r.

Original entry on oeis.org

3, 6, 5, 4, 9, 8, 4, 9, 8, 2, 1, 9, 8, 5, 8, 0, 4, 4, 5, 7, 9, 7, 3, 6, 8, 7, 5, 4, 4, 6, 2, 9, 9, 0, 8, 8, 3, 2, 2, 7, 5, 8, 8, 0, 6, 9, 6, 3, 4, 6, 0, 2, 9, 5, 0, 1, 5, 9, 5, 5, 1, 6, 7, 6, 8, 2, 1, 1, 8, 8, 3, 6, 7, 4, 0, 8, 4, 8, 7, 3, 0, 0, 3, 5, 2, 2, 8, 4, 1, 0, 7, 4, 0, 8, 2, 1, 5, 4, 8, 5, 3, 8, 7, 5, 7, 8
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 27 2019

Keywords

Examples

			0.36549849821985804457973687544629908832275880696346029501595516768211883674...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[r/.FindRoot[(1-r)^(2-2*r) * r^(2*r) == 1-2*r, {r, 1/3}, WorkingPrecision->250], 10, 200][[1]]

A245242 a(n) = Sum_{k=0..n} binomial(n^2 - k^2, n*k - k^2).

Original entry on oeis.org

1, 2, 5, 40, 987, 73026, 15656191, 9146092572, 15579632823935, 71399036100619112, 916371430754269894286, 33098484899485154272997507, 3182514246669584511131232330210, 875352526298195795986890973534420721, 650999500319874632196352991280266092913655
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2014

Keywords

Examples

			We can illustrate the terms as the row sums of triangle A245243;
triangle A245243(n,k) = C(n^2 - k^2, n*k - k^2) begins:
1;
1, 1;
1, 3, 1;
1, 28, 10, 1;
1, 455, 495, 35, 1;
1, 10626, 54264, 8008, 126, 1;
1, 324632, 10518300, 4686825, 125970, 462, 1;
1, 12271512, 3190187286, 5586853480, 354817320, 1961256, 1716, 1; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n^2-k^2,n*k-k^2],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jul 15 2014 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n^2 - k^2, n*k - k^2))}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n)=sum(k=0,n,binomial(n^2,n*k)*binomial(n*k,k^2)/binomial(n^2,k^2))}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} C(n^2, n*k) * C(n*k, k^2) / C(n^2, k^2).
a(n) = Sum_{k=0..n} ((n+k)*(n-k))! / ( (n*(n-k))! * (k*(n-k))! ).
a(n) = Sum_{k=0..n} (n^2 - k^2)! / ( (n^2 - n*k)! * (n*k - k^2)! ).
Limit n->infinity a(n)^(1/n^2) = r^(-(1-r)^2/(2*r)) = 1.65459846190854391888257390278..., where r = 0.37667447497728449846981481128313080857... (see A245259) is the root of the equation r^(2*r-1) = (r+1)^(2*r). - Vaclav Kotesovec, Jul 15 2014

A245260 Decimal expansion of the root of the equation r*log(r/(1-r))=1.

Original entry on oeis.org

7, 8, 2, 1, 8, 8, 2, 9, 4, 2, 8, 0, 1, 9, 9, 9, 0, 1, 2, 2, 0, 2, 9, 7, 0, 7, 5, 9, 2, 6, 7, 4, 4, 7, 8, 0, 1, 8, 1, 9, 0, 8, 4, 0, 3, 9, 6, 6, 2, 9, 9, 5, 1, 6, 8, 7, 0, 9, 6, 8, 3, 3, 2, 3, 9, 5, 6, 9, 1, 6, 9, 9, 4, 1, 2, 4, 6, 7, 4, 6, 7, 1, 9, 5, 3, 8, 2, 3, 9, 2, 9, 0, 6, 6, 7, 3, 2, 5, 1, 3, 6, 6, 7, 5, 8, 5
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 15 2014

Keywords

Examples

			0.78218829428019990122029707592674478018190840396629951687...
		

Crossrefs

Programs

  • Maple
    evalf(solve(r*log(r/(1-r))=1), 100)
  • Mathematica
    RealDigits[r/.FindRoot[r*Log[r/(1-r)]==1, {r, 3/4}, WorkingPrecision->250], 10, 200][[1]]
    RealDigits[1/(1+LambertW[E^(-1)]), 10, 200][[1]]

Formula

Equals 1/(1+LambertW(exp(-1))).
Showing 1-5 of 5 results.