A245304 Numbers m such that m+1, m+3, m+7, m+9 and m+13 are all primes.
4, 10, 100, 1480, 16060, 19420, 21010, 22270, 43780, 55330, 144160, 165700, 166840, 195730, 201820, 225340, 247600, 268810, 326140, 347980, 361210, 397750, 465160, 518800, 536440, 633460, 633790, 661090, 768190, 795790, 829720, 857950, 876010, 958540
Offset: 1
Keywords
References
- W. SierpiĆski, 250 Problems in Elementary Number Theory. New York: American Elsevier, 1970. Problem #82, variant.
Links
- Reinhard Zumkeller and Jens Kruse Andersen, Table of n, a(n) for n = 1..1000 (first 120 terms from Zumkeller)
Programs
-
Haskell
a245304 n = a245304_list !! (n-1) a245304_list = map (pred . head) $ filter (all (== 1) . map a010051') $ iterate (zipWith (+) [1, 1, 1, 1, 1]) [1, 3, 7, 9, 13]
-
Magma
[n: n in [0..10^6] | IsPrime(n+1) and IsPrime(n+3) and IsPrime(n+7) and IsPrime(n+9) and IsPrime(n+13)]; // Vincenzo Librandi, Jun 15 2015
-
Mathematica
Select[Range[10^6],AllTrue[#+{1,3,7,9,13},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 07 2015 *)
-
PARI
forprime(p=2, 10^7, m=p-1; if(isprime(m+3)&&isprime(m+7)&&isprime(m+9)&&isprime(m+13), print1(m", "))) \\ Jens Kruse Andersen, Jul 18 2014
Formula
a(n) = A022006(n)-1. - Jens Kruse Andersen, Jul 18 2014