cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A025829 Expansion of 1/((1-x^3)*(1-x^4)*(1-x^7)).

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 1, 2, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8, 7, 8, 9, 9, 9, 10, 11, 11, 11, 12, 13, 13, 13, 15, 15, 15, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 23, 24, 24, 25, 26, 27, 27, 28, 30, 30, 30
Offset: 0

Views

Author

Keywords

Comments

Partition of n into parts 3, 4, and 7; see A245368 for the compositions. - David Neil McGrath, Sep 08 2014

Examples

			There are 7 partitions of 27 into parts 3,4 and 7. These are (77733)(774333)(744444)(7443333)(4444443)(44433333)(333333333). - _David Neil McGrath_, Sep 08 2014
		

Programs

  • Maple
    f:= gfun:-rectoproc({a(0) = 1, a(1) = 0, a(2) = 0, a(3) = 1, a(4) = 1, a(5) = 0, a(6) = 1, a(7) = 2, a(8) = 1, a(9) = 1, a(10) = 2, a(11) = 2, a(12) = 2, a(13) = 2, a(n) = a(n-3)+a(n-4)-a(n-10)-a(n-11)+a(n-14)},a(n),'remember'):
    seq(f(n),n=0..100); # Robert Israel, Sep 08 2014
  • Mathematica
    LinearRecurrence[{0,0,1,1,0,0,0,0,0,-1,-1,0,0,1}, {1,0,0,1,1,0,1,2,1,1,2,2,2,2}, 80] (* Jean-François Alcover, Aug 21 2022 *)
  • PARI
    a(n)=floor((-2)^(n%3\2)/9-(n%2)*(-1)^(n\2)/4+(3*n^2+42*n+448)/504) \\ Tani Akinari, Aug 19 2013
    
  • PARI
    Vec(1/((1-x^3)*(1-x^4)*(1-x^7)) + O(x^80)) \\ Michel Marcus, Sep 08 2014
    
  • PARI
    a(n) = (n^2 +14*n -56*[0,0,1][n%3+1] +21*[8,5,8,9][n%4+1])\168 \\ Hoang Xuan Thanh, Sep 01 2025

Formula

a(n) = a(n-3)+a(n-4)-a(n-10)-a(n-11)+a(n-14). - David Neil McGrath, Sep 08 2014
a(n) = floor(((n+1)*(n+13) + 19*(((n+1) mod 3) - (n mod3)))/168 + ((n mod 4)-1)*(3*(n mod 4)-5)/8 + ((n+1) mod 4)/4). - Hoang Xuan Thanh, Sep 01 2025
Showing 1-1 of 1 results.