A245455 Number of minimax elements in the affine Weyl group of the Lie algebra so(2n).
1, 3, 4, 9, 23, 61, 166, 459, 1284, 3623, 10292, 29395, 84327, 242807, 701314, 2031085, 5895951, 17150013, 49975428, 145862571, 426337773, 1247741271, 3655973226, 10723668081, 31485145902, 92524150845, 272120203908, 800931753629, 2359038637409, 6952768502473
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- D. I. Panyushev, Ideals of Heisenberg type and minimax elements of affine Weyl groups, arXiv:math/0311347 [math.RT], Lie Groups and Invariant Theory, Amer. Math. Soc. Translations, Series 2, Volume 213, (2005), ed. E. Vinberg
Crossrefs
Cf. A005773.
Programs
-
Maple
A245455 := proc(n) coeftayl(x/2*(1+2*x)*(1+sqrt(1-2*x-3*x^2)/(1-3*x)), x=0, n); end proc: seq(A245455(n), n=1..30); # Wesley Ivan Hurt, Jul 26 2014
-
Mathematica
Rest[CoefficientList[Series[x/2*(1+2*x)*(1+Sqrt[1-2*x-3*x^2]/(1-3*x)), {x, 0, 20}], x]] (* Vaclav Kotesovec, Jul 25 2014 *)
Formula
O.g.f.: x/2*(1+2*x)*( 1 + sqrt(1-2*x-3*x^2)/(1-3*x) ).
a(n) ~ 5*3^(n-5/2) / sqrt(Pi*n). - Vaclav Kotesovec, Jul 25 2014
(-n+1)*a(n) +4*(1)*a(n-1) +7*(n-3)*a(n-2) +6*(n-5)*a(n-3)=0. - R. J. Mathar, Sep 06 2016
(5*n-4)*(n-1)*a(n) +2*(-5*n^2+9*n-10)*a(n-1) -3*(5*n+1)*(n-4)*a(n-2)=0. - R. J. Mathar, Sep 06 2016
Comments