A245567 Number of antichain covers of a labeled n-set such that for every two distinct elements in the n-set, there is a set in the antichain cover containing one of the elements but not the other.
2, 1, 1, 5, 76, 5993, 7689745, 2414465044600, 56130437141763247212112, 286386577668298408602599478477358234902247
Offset: 0
Examples
For n = 0, a(0) = 2 by the antisets {}, {{}}. For n = 1, a(1) = 1 by the antiset {{1}}. For n = 2, a(2) = 1 by the antiset {{1},{2}}. For n = 3, a(3) = 5 by the antisets {{1},{2},{3}}, {{1,2},{1,3}}, {{1,2},{2,3}}, {{1,3},{2,3}}, {{1,2},{1,3},{2,3}}.
Links
- Patrick De Causmaecker and Stefan De Wannemacker, On the number of antichains of sets in a finite universe, arXiv:1407.4288 [math.CO], 2014.
Crossrefs
Sequences counting and ranking T_0 structures:
A000112 (unlabeled topologies),
A001035 (topologies),
A059201 (covering set-systems),
A245567 (antichain covers),
A309615 (covering set-systems closed under intersection),
A316978 (factorizations),
A319559 (unlabeled set-systems by weight),
A319564 (integer partitions),
A319637 (unlabeled covering set-systems),
A326939 (covering sets of subsets),
A326940 (set-systems),
A326941 (sets of subsets),
A326943 (covering sets of subsets closed under intersection),
A326944 (covering sets of subsets with {} and closed under intersection),
A326945 (sets of subsets closed under intersection),
A326946 (unlabeled set-systems),
A326947 (BII-numbers of set-systems),
A326948 (connected set-systems),
A326949 (unlabeled sets of subsets),
A326950 (antichains),
A326959 (set-systems closed under intersection),
A327013 (unlabeled covering set-systems closed under intersection),
A327016 (BII-numbers of topologies).
Programs
-
Mathematica
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&stableQ[#,SubsetQ]&&UnsameQ@@dual[#]&]],{n,0,3}] (* Gus Wiseman, Aug 14 2019 *)
Formula
A000372(n) = Sum_{k=0..n} S(n+1,k+1)*a(k).
a(n) = A006126(n) - Sum_{k=1..n-1} S(n,k)*a(k).
Were n > 0 and S(n,k) is the number of ways to partition a set of n elements into k nonempty subsets.
Inverse binomial transform of A326950, if we assume a(0) = 1. - Gus Wiseman, Aug 14 2019
Extensions
Definition corrected by Patrick De Causmaecker, Oct 10 2014
a(9), based on A000372, from Patrick De Causmaecker, Jun 01 2023
Comments