cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A245640 Prime numbers P such that 24*P^3-1 is also prime.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 43, 61, 67, 73, 97, 127, 131, 137, 167, 241, 281, 307, 353, 433, 463, 467, 541, 557, 631, 641, 647, 653, 661, 673, 683, 821, 853, 857, 907, 911, 991, 1033, 1063, 1103, 1117, 1123, 1291, 1307, 1433, 1453, 1511, 1523, 1553, 1567, 1571, 1597, 1601, 1607
Offset: 1

Views

Author

Pierre CAMI, Jul 28 2014

Keywords

Examples

			24*2^3-1=191 prime so a(1)=2.
24*3^3-1=647 prime so a(2)=3.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1700)| IsPrime(24*p^3-1)]; // Vincenzo Librandi, Sep 07 2014
  • Mathematica
    Select[Prime[Range[300]], PrimeQ[24 #^3 - 1] &] (* Vincenzo Librandi, Sep 07 2014 *)
  • PARI
    select(p->isprime(24*p^3-1), primes(300)) \\ Colin Barker, Jul 28 2014
    

A245641 Prime numbers P such that 8*P^2-1 and 24*P^3-1 are also primes.

Original entry on oeis.org

2, 3, 5, 17, 67, 137, 241, 353, 541, 641, 907, 1033, 1307, 1453, 1607, 1621, 1733, 1811, 2053, 2243, 2273, 2377, 2621, 2963, 3677, 3701, 3881, 3943, 4861, 5261, 5647, 6101, 6823, 7723, 7877, 8081, 8101, 8447, 8923, 9467, 10111, 10223, 11483, 11617, 12161, 12203, 12227, 12457
Offset: 1

Views

Author

Pierre CAMI, Jul 28 2014

Keywords

Comments

Intersection of A245639 and A245640.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(15000)| IsPrime(8*p^2-1)and IsPrime(24*p^3-1)]; // Vincenzo Librandi, Sep 08 2014
  • Mathematica
    Select[Prime[Range[2000]], PrimeQ[8 #^2 - 1] && PrimeQ[24 #^3 - 1] &] (* Vincenzo Librandi, Sep 08 2014 *)
  • PARI
    select(p->isprime(8*p^2-1)&&isprime(24*p^3-1), primes(3000)) \\ Colin Barker, Jul 28 2014
    

A245674 Prime numbers P such that 8*P^2-1 and 8*(8*P^2-1)^2-1 are also prime numbers.

Original entry on oeis.org

2, 79, 107, 173, 257, 359, 383, 523, 593, 971, 1493, 1811, 1867, 2273, 2357, 3187, 4111, 4723, 6389, 7607, 8101, 8699, 9473, 11027, 12157, 12227, 15017, 16301, 16987, 18797, 19801, 19913, 20071, 20323, 21313, 22003, 22307, 23203, 24229, 24733, 24859, 24943
Offset: 1

Views

Author

Pierre CAMI, Jul 29 2014

Keywords

Comments

Subsequence of A245639.
For P < 10^9 in this sequence, 8*(8*(8*P^2-1)^2-1)^2-1 is composite.
Let f(x) = 8*x^2-1 and P >= 2. Then {f(P), f(f(P)), f(f(f(P)))} cannot all be prime. Proof: By doing cases on P mod 7, it can be shown that {f(P), f(f(P)), f(f(f(P)))} contains a multiple of 7. Also, all 3 numbers are greater than 7. - Jason Yuen, Feb 26 2025

Examples

			2 is prime, 8*2^2-1=31 is prime, 8*31^2-1=7687 is prime, so 2 is in the sequence.
		

Crossrefs

Cf. A245639.

Programs

  • Magma
    [p: p in PrimesUpTo(25000)| IsPrime(8*p^2-1)and IsPrime(512*p^4-128*p^2+7)]; // Vincenzo Librandi, Sep 08 2014
  • Mathematica
    f[n_]:=8 n^2 - 1; Select[Prime[Range[3000]], PrimeQ[f[#]]&&PrimeQ[f[f[#]]]&] (* Vincenzo Librandi, Sep 08 2014 *)
  • PARI
    f(x) = 8*x^2-1;
    forprime(p=1,10^5,if(ispseudoprime(f(p)) && ispseudoprime(f(f(p))), print1(p,", "))) \\ Derek Orr, Jul 29 2014
    
Showing 1-3 of 3 results.