cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A245639 Prime numbers P such that 8*P^2-1 is also prime.

Original entry on oeis.org

2, 3, 5, 11, 17, 19, 23, 31, 59, 67, 79, 89, 103, 107, 137, 173, 193, 229, 233, 241, 257, 263, 271, 311, 317, 353, 359, 383, 409, 431, 479, 509, 521, 523, 541, 563, 569, 577, 593, 599, 613, 641, 709, 739, 751, 787, 829, 887, 907, 919, 947, 971, 983, 1033
Offset: 1

Views

Author

Pierre CAMI, Jul 28 2014

Keywords

Examples

			8*2^2-1=31 prime so a(1)=2.
8*3^2-1=71 prime so a(2)=3.
8*5^2-1=199 prime so a(3)=5.
8*7^2-1=391 composite.
8*11^2-1=967 prime so a(4)=11.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1500)| IsPrime(8*p^2-1)]; // Vincenzo Librandi, Sep 07 2014
  • Mathematica
    Reap[Do[p = Prime[n]; If[PrimeQ[8*p^2-1], Sow[p]], {n, 1, 200}]][[2, 1]] (* Jean-François Alcover, Jul 28 2014 *)
    Select[Prime[Range[200]], PrimeQ[8 #^2 - 1] &] (* Vincenzo Librandi, Sep 07 2014 *)
  • PARI
    select(p->isprime(8*p^2-1), primes(300)) \\ Colin Barker, Jul 28 2014
    
  • Python
    import sympy
    from sympy import isprime
    from sympy import prime
    for n in range(1,10**3):
      p = prime(n)
      if isprime(8*p**2-1):
        print(p,end=', ')
    # Derek Orr, Aug 13 2014
    

A245640 Prime numbers P such that 24*P^3-1 is also prime.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 43, 61, 67, 73, 97, 127, 131, 137, 167, 241, 281, 307, 353, 433, 463, 467, 541, 557, 631, 641, 647, 653, 661, 673, 683, 821, 853, 857, 907, 911, 991, 1033, 1063, 1103, 1117, 1123, 1291, 1307, 1433, 1453, 1511, 1523, 1553, 1567, 1571, 1597, 1601, 1607
Offset: 1

Views

Author

Pierre CAMI, Jul 28 2014

Keywords

Examples

			24*2^3-1=191 prime so a(1)=2.
24*3^3-1=647 prime so a(2)=3.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1700)| IsPrime(24*p^3-1)]; // Vincenzo Librandi, Sep 07 2014
  • Mathematica
    Select[Prime[Range[300]], PrimeQ[24 #^3 - 1] &] (* Vincenzo Librandi, Sep 07 2014 *)
  • PARI
    select(p->isprime(24*p^3-1), primes(300)) \\ Colin Barker, Jul 28 2014
    
Showing 1-2 of 2 results.