A245657 Primes p for which none of the concatenations p3, p9, 3p, 9p are primes.
3, 107, 113, 179, 317, 443, 487, 599, 641, 653, 751, 773, 937, 977, 991, 1021, 1087, 1103, 1187, 1201, 1213, 1217, 1301, 1409, 1427, 1439, 1483, 1553, 1559, 1579, 1609, 1637, 1693, 1747, 1777, 1787, 1789, 1861, 1949, 1987, 1993, 2081, 2129, 2239, 2281, 2287, 2293, 2351, 2393, 2477
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Prime[Range[400]],NoneTrue[{10#+3,10#+9,3*10^IntegerLength[#]+#, 9*10^IntegerLength[ #]+#},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 06 2020 *)
-
PARI
lista(nn) = {forprime(p=2, nn, if (!isprime(eval(concat(Str(p), Str(3)))) && ! isprime(eval(concat(Str(p), Str(9)))) && ! isprime(eval(concat(Str(3), Str(p)))) && ! isprime(eval(concat(Str(9), Str(p)))), print1(p, ", ")););} \\ Michel Marcus, Sep 14 2014
-
Python
import sympy from sympy import isprime from sympy import prime for n in range(1,10**3): p = str(prime(n)) if not isprime(int(p+'3')) and not isprime(int(p+'9')) and not isprime(int('3'+p)) and not isprime(int('9'+p)): print(int(p),end=', ') # Derek Orr, Sep 16 2014
Extensions
More terms from Derek Orr, Sep 16 2014