cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245659 Prime numbers P such that Q=2*P^2-1, R=2*Q^2-1, S=2*R^2-1 and T=2*S^2-1 are all prime numbers.

Original entry on oeis.org

281683, 496789, 823421, 1352753, 1719217, 6174109, 8643149, 9761051, 9843529, 16191167, 19132121, 19745797, 23490473, 28457797, 31820429, 32860271, 36552277, 37068569, 43506569, 44776981, 46808903, 55035047, 55957807, 67194403, 75099137, 83092897, 86580421, 89135089
Offset: 1

Views

Author

Pierre CAMI, Jul 28 2014

Keywords

Comments

Subsequence of A106483.
For P = 496789, 83092897, 467014643, U=2*T^2-1 is also prime. [Corrected by Jens Kruse Andersen, Aug 21 2014]

Examples

			281683 is prime P.
Q=2*P^2-1 = 158690624977 is prime Q.
R=2*Q^2-1 = 50365428911181712501057 is prime R.
S=2*R^2-1 = 5073352858814597404058971422301788780452234497 is prime S.
T=2*S^2-1 = 51477818460084496601334991724899650493354568309112026195311592373475872924903206720553686017 is prime T.
U=2*T^2-1 is composite.
		

Crossrefs

Cf. A106483.

Programs

  • Mathematica
    f[n_]:=2n^2-1;Select[Prime[Range[5170000]],PrimeQ[f[#]]&&PrimeQ[ f[f[#]]]&&PrimeQ[ f[f[f[#]]]]&&PrimeQ[f[f[f[f[#]]]]]&] (* Farideh Firoozbakht, Aug 11 2014 *)
    Select[Prime[Range[52*10^5]],AllTrue[Rest[FoldList[2#^2-1&,{#,#,#,#,#}]],PrimeQ]&] (* Harvey P. Dale, Jan 13 2023 *)
  • PARI
    f(x)=return(2*x^2-1)
    forprime(p=1,10^8,if(ispseudoprime(f(p)) && ispseudoprime(f(f(p))) && ispseudoprime(f(f(f(p)))) && ispseudoprime(f(f(f(f(p))))), print1(p,", "))) \\ Derek Orr, Jul 28 2014

Extensions

More terms from Derek Orr, Jul 28 2014