A245659 Prime numbers P such that Q=2*P^2-1, R=2*Q^2-1, S=2*R^2-1 and T=2*S^2-1 are all prime numbers.
281683, 496789, 823421, 1352753, 1719217, 6174109, 8643149, 9761051, 9843529, 16191167, 19132121, 19745797, 23490473, 28457797, 31820429, 32860271, 36552277, 37068569, 43506569, 44776981, 46808903, 55035047, 55957807, 67194403, 75099137, 83092897, 86580421, 89135089
Offset: 1
Keywords
Examples
281683 is prime P. Q=2*P^2-1 = 158690624977 is prime Q. R=2*Q^2-1 = 50365428911181712501057 is prime R. S=2*R^2-1 = 5073352858814597404058971422301788780452234497 is prime S. T=2*S^2-1 = 51477818460084496601334991724899650493354568309112026195311592373475872924903206720553686017 is prime T. U=2*T^2-1 is composite.
Links
- Pierre CAMI, Table of n, a(n) for n = 1..140
Crossrefs
Cf. A106483.
Programs
-
Mathematica
f[n_]:=2n^2-1;Select[Prime[Range[5170000]],PrimeQ[f[#]]&&PrimeQ[ f[f[#]]]&&PrimeQ[ f[f[f[#]]]]&&PrimeQ[f[f[f[f[#]]]]]&] (* Farideh Firoozbakht, Aug 11 2014 *) Select[Prime[Range[52*10^5]],AllTrue[Rest[FoldList[2#^2-1&,{#,#,#,#,#}]],PrimeQ]&] (* Harvey P. Dale, Jan 13 2023 *)
-
PARI
f(x)=return(2*x^2-1) forprime(p=1,10^8,if(ispseudoprime(f(p)) && ispseudoprime(f(f(p))) && ispseudoprime(f(f(f(p)))) && ispseudoprime(f(f(f(f(p))))), print1(p,", "))) \\ Derek Orr, Jul 28 2014
Extensions
More terms from Derek Orr, Jul 28 2014
Comments