cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245699 Decimal expansion of the expected distance from a randomly selected point in a 45-45-90 degree triangle of base length 1 to the vertex of the right angle: (4+sqrt(2)*log(3+2*sqrt(2)))/12.

Original entry on oeis.org

5, 4, 1, 0, 7, 5, 0, 8, 0, 0, 4, 6, 7, 4, 3, 5, 0, 4, 4, 6, 4, 6, 7, 3, 3, 6, 0, 0, 8, 3, 5, 2, 2, 6, 6, 7, 5, 5, 0, 2, 3, 1, 7, 7, 0, 7, 8, 2, 1, 8, 9, 0, 8, 4, 2, 9, 9, 5, 7, 1, 5, 9, 2, 0, 3, 2, 0, 5, 6, 6, 6, 8, 1, 8, 2, 3, 3, 8, 0, 6, 0, 1, 5, 5, 8, 8, 9, 6, 9, 1, 0, 7, 8, 5, 4, 2, 2, 0, 9, 3, 5, 6, 5, 2, 7, 8, 8, 4, 0, 3, 0, 4, 7, 4, 2, 3, 1, 8, 1, 4
Offset: 0

Views

Author

Derek Orr, Jul 29 2014

Keywords

Examples

			0.54107508004674350446467336008352266755023177078218908429957159203205...
		

Crossrefs

Cf. A103712.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (4+Sqrt(2)*Log(3 +2*Sqrt(2)))/12; // G. C. Greubel, Oct 06 2018
  • Maple
    evalf((4+sqrt(2)*log(3+2*sqrt(2)))/12,100); # Muniru A Asiru, Oct 07 2018
  • Mathematica
    RealDigits[(4 + Sqrt[2]*Log[3 + 2*Sqrt[2]])/12, 10, 100][[1]] (* G. C. Greubel, Oct 06 2018 *)
  • PARI
    default(realprecision, 100); (4+sqrt(2)*log(3+2*sqrt(2)))/12 \\ G. C. Greubel, Oct 06 2018
    

Formula

Equals Integral_{y = 0..Pi/4; x = 0..1/(sqrt(2)*cos(y))} 4x^2 dx dy.
Equals Integral_{y = 0..Pi/4} (sqrt(2)/3)*sec^3(y) dy.