A245728 Numbers k that divide 2^k + 6.
1, 2, 10, 1030, 10009593662, 13957196317, 55299492770, 3764656723270
Offset: 1
Examples
2^10 + 6 = 1030 is divisible by 10. Thus 10 is a term of this sequence.
Links
- OEIS Wiki, 2^n mod n
Programs
-
Maple
select(n -> 2 &^ n + 6 mod n = 0, [$1..10^6]); # Robert Israel, Jul 30 2014
-
Mathematica
Select[Range[10^5], Divisible[2^# + 6, #] &] (* Robert Price, Oct 12 2018 *)
-
PARI
for(n=1,10^9,if(Mod(2,n)^n==Mod(-6,n),print1(n,", ")))
Extensions
a(5) from Jason G. Wurtzel, Sep 25 2014
a(6)-a(8) from Max Alekseyev, Sep 23 2016
Comments