A245729 Composite numbers n = A020639(n) * A032742(n) where the greatest proper divisor A032742(n) is greater than the square of the smallest prime factor A020639(n), and that greatest proper divisor A032742(n) is either a prime or satisfies the same condition (i.e., is itself the term of this sequence).
10, 14, 20, 22, 26, 28, 33, 34, 38, 39, 40, 44, 46, 51, 52, 56, 57, 58, 62, 66, 68, 69, 74, 76, 78, 80, 82, 86, 87, 88, 92, 93, 94, 99, 102, 104, 106, 111, 112, 114, 116, 117, 118, 122, 123, 124, 129, 132, 134, 136, 138, 141, 142, 145, 146, 148, 152, 153, 155, 156, 158, 159, 160, 164, 166, 171, 172, 174, 176, 177
Offset: 1
Keywords
Examples
10 = 2*5 is present, because 2^2 < 5 and 5 is a prime. 20 = 2*10 is present, because 2^2 < 10, and 10 itself is present in the sequence.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a245729 n = a245729_list !! (n-1) a245729_list = filter f [1..] where f x = p ^ 2 < q && (a010051' q == 1 || f q) where q = div x p; p = a020639 x -- Antti Karttunen after Reinhard Zumkeller's code for A138511, Jan 09 2015
-
Scheme
;; With Antti Karttunen's IntSeq-library. (define (charfun_for_A245729 n) (if (and (> (A001222 n) 1) (> (A032742 n) (A000290 (A020639 n)))) (+ (A010051 (A032742 n)) (charfun_for_A245729 (A032742 n))) 0)) (define A245729 (NONZERO-POS 1 1 charfun_for_A245729)) ;; Antti Karttunen, Jan 16 2015
Comments