A245779 Numbers n such that (n/tau(n) - sigma(n)/n) < 1.
1, 2, 3, 4, 6, 8, 10, 12, 18, 24
Offset: 1
Examples
24 is in sequence because 24/tau(24) - sigma(24)/24 = 24/8 - 60/24 = 1/2.
Programs
-
Magma
[n:n in [1..1000000] | (Numerator((n /(#[d: d in Divisors(n)]))-(SumOfDivisors(n)/n))) / (Denominator((n/(#[d: d in Divisors(n)]))-(SumOfDivisors(n)/n))) lt 1]
-
Mathematica
a245779[n_Integer] := Select[Range[n], If[#/DivisorSigma[0, #] - DivisorSigma[1, #]/# < 1, True, False] &]; a245779[1000] (* Michael De Vlieger, Aug 07 2014 *) Select[Range[25],#/DivisorSigma[0,#]-DivisorSigma[1,#]/#<1&] (* Harvey P. Dale, Nov 21 2023 *)
-
PARI
for(n=1,10^3, if(n/numdiv(n) - sigma(n)/n < 1, print1(n,", "))) \\ Derek Orr, Aug 02 2014
Comments