cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A245777 Denominator of (n / tau(n) - sigma(n) / n).

Original entry on oeis.org

1, 2, 6, 12, 10, 2, 14, 8, 9, 10, 22, 3, 26, 14, 20, 80, 34, 6, 38, 30, 84, 22, 46, 2, 75, 26, 108, 3, 58, 20, 62, 96, 44, 34, 140, 36, 74, 38, 156, 4, 82, 28, 86, 33, 30, 46, 94, 60, 147, 150, 68, 78, 106, 36, 220, 7, 228, 58, 118, 5, 122, 62, 126, 448, 260
Offset: 1

Views

Author

Jaroslav Krizek, Aug 01 2014

Keywords

Comments

Denominator of (n / A000005(n) - A000203(n) / n).
See A245776 - numerator of (n / tau(n) - sigma(n) / n).
If n is an odd prime, a(n) = 2*n. - Robert Israel, Aug 01 2014
First deviation from A245785 (denominator of (n/tau(n) + sigma(n)/n)) is at a(300); a(300) = 75, A245785(300) = 25. Sequence of numbers n such that A245785(n) is not equal to a(n): 300, 768, 1452, 1764, 2100, 3468, 3900, 5376, 5700, 6084, 6348, 9075, 9300, ... See (Magma) [n: n in [1..10000] | (Denominator((n/(#[d: d in Divisors(n)]))+(SumOfDivisors(n)/n))) - (Denominator((n/(#[d: d in Divisors(n)]))-(SumOfDivisors(n)/n))) ne 0] - Jaroslav Krizek, Aug 15 2014

Examples

			For n = 9; a(9) = denominator(9/tau(9) - sigma(9)/9) = denominator(9/3 - 13/9) = denominator(14/9) = 9.
		

Crossrefs

Programs

  • Magma
    [Denominator((n/(#[d: d in Divisors(n)]))-(SumOfDivisors(n)/n)): n in [1..100]]
    
  • Mathematica
    Table[Denominator[n/DivisorSigma[0, n] - DivisorSigma[1, n]/n], {n, 70}] (* Alonso del Arte, Aug 15 2014 *)
  • PARI
    vector(150, n, denominator(n/numdiv(n) - sigma(n)/n)) \\ Derek Orr, Aug 01 2014

Formula

A245776(n) / a(n) < 1 for numbers n in A245779.
A245776(n) / a(n) = integer for numbers n in A245778.
a(n) = 1 for numbers n in A245778.

A245784 Numerator of (n/tau(n) + sigma(n)/n).

Original entry on oeis.org

2, 5, 17, 37, 37, 7, 65, 31, 40, 43, 145, 13, 197, 73, 107, 411, 325, 31, 401, 163, 569, 157, 577, 11, 718, 211, 889, 20, 901, 123, 1025, 701, 427, 343, 1417, 235, 1445, 421, 1745, 29, 1765, 211, 1937, 305, 277, 601, 2305, 443, 2572, 1529, 963, 823, 2917, 323
Offset: 1

Views

Author

Jaroslav Krizek, Aug 15 2014

Keywords

Comments

Numerator of (n/A000005(n) + A000203(n)/n).
See A245785 - denominator of (n/tau(n) + sigma(n)/n).

Examples

			For n = 9; a(9) = numerator(9/tau(9) + sigma(9)/9) = numerator(9/3 + 13/9) = numerator(40/9) = 40.
		

Crossrefs

Programs

  • Magma
    [Numerator((n/(#[d: d in Divisors(n)]))+(SumOfDivisors(n)/n)): n in [1..1000]]
    
  • PARI
    for(n=1, 100, s=n/numdiv(n); t=sigma(n)/n; print1(numerator(s+t),", ")) \\ Derek Orr, Aug 15 2014

A245786 Numbers n such that k(n) = (n/tau(n) + sigma(n)/n) is an integer.

Original entry on oeis.org

1, 672, 4680, 30240, 23569920, 45532800, 275890944, 14182439040, 153003540480, 403031236608, 518666803200
Offset: 1

Views

Author

Jaroslav Krizek, Aug 15 2014

Keywords

Comments

Numbers n such that A245784(n) / A245785(n) = (n / A000005(n) + A000203(n) / n) is an integer.
Sequence of numbers k(n): 2, 31, 101, 319, 73660, 118579, …
Conjecture: Subsequence of A216793.
Refactorable multiply-perfect numbers (A245782) are members of this sequence.
a(12) > 10^13. - Giovanni Resta, Jul 13 2015

Examples

			672 is in sequence because 672/tau(672) + sigma(672)/672 = 672/24 + 2016/672 = 31 (integer).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..100000] | (Denominator((n/(#[d: d in Divisors(n)])) + (SumOfDivisors(n)/n)) eq 1)]
    
  • PARI
    for(n=1, 10^8, s=n/numdiv(n); t=sigma(n)/n; if(floor(s+t)==s+t, print1(n, ", "))) \\ Derek Orr, Aug 15 2014

Formula

A245785(a(n)) = 1.

Extensions

a(7)-a(11) from Giovanni Resta, Jul 13 2015
Showing 1-3 of 3 results.