cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A245782 Refactorable multiply-perfect numbers.

Original entry on oeis.org

1, 672, 30240, 23569920, 45532800, 14182439040, 153003540480, 403031236608, 518666803200, 13661860101120, 740344994887680, 796928461056000, 212517062615531520, 87934476737668055040, 154345556085770649600, 170206605192656148480, 1161492388333469337600, 1802582780370364661760
Offset: 1

Views

Author

Jaroslav Krizek, Aug 01 2014

Keywords

Comments

Multiply-perfect numbers k (A007691) such that k / tau(k) is an integer.
Also multiply-perfect numbers k (A007691) such that (k / tau(k) - sigma(k) / k) = (k / A000005(k) - A000203(k) / k) is an integer.
Also multiply-perfect numbers k (A007691) such that (k / tau(k) + sigma(k) / k) = (k / A000005(k) + A000203(k) / k) is an integer.

Examples

			Multiply-perfect number 672 is in sequence because 672 / tau(672) = 28 (integer).
		

Crossrefs

Intersection of A033950 (refactorable numbers) and A007691 (multiply-perfect numbers).
Subsequence of A245778 and A245786.
Supersequence of A047728.

Programs

  • Magma
    [n:n in [A007691(n)] | (Denominator((n/(#[d: d in Divisors(n)]))-(SumOfDivisors(n)/n))) eq 1];
    
  • Mathematica
    q[n_] := Module[{d = DivisorSigma[0, n], s = DivisorSigma[1, n]}, Divisible[s, n] && Divisible[n, d]]; Select[Range[31000], q] (* Amiram Eldar, May 09 2024 *)
  • PARI
    isok(n) = !(n % numdiv(n)) && !(sigma(n) % n); \\ Michel Marcus, Aug 11 2014
    
  • PARI
    is(k) = {my(f = factor(k), s = sigma(f), d = numdiv(f)); !(s % k) && !(k % d);} \\ Amiram Eldar, May 09 2024

Extensions

a(14)-a(18) from Amiram Eldar, May 09 2024

A245785 Denominator of (n/tau(n) + sigma(n)/n).

Original entry on oeis.org

1, 2, 6, 12, 10, 2, 14, 8, 9, 10, 22, 3, 26, 14, 20, 80, 34, 6, 38, 30, 84, 22, 46, 2, 75, 26, 108, 3, 58, 20, 62, 96, 44, 34, 140, 36, 74, 38, 156, 4, 82, 28, 86, 33, 30, 46, 94, 60, 147, 150, 68, 78, 106, 36, 220, 7, 228, 58, 118, 5, 122, 62, 126, 448, 260
Offset: 1

Views

Author

Jaroslav Krizek, Aug 15 2014

Keywords

Comments

Denominator of (n/A000005(n) + A000203(n)/n).
See A245784 - numerator of (n/tau(n) + sigma(n)/n).
A245784(n) / a(n) = integer for numbers n in A245786; a(n) = 1.
First deviation from A245777 (denominator of (n/tau(n) - sigma(n)/n)) is at a(300); a(300) = 25, A245777(300) = 75. Sequence of numbers n such that A245777(n) is not equal to a(n): 300, 768, 1452, 1764, 2100, 3468, 3900, 5376, 5700, 6084, 6348, 9075, 9300, ... See (Magma) [n: n in [1..10000] | (Denominator((n/(#[d: d in Divisors(n)]))+(SumOfDivisors(n)/n))) - (Denominator((n/(#[d: d in Divisors(n)]))-(SumOfDivisors(n)/n))) ne 0]

Examples

			For n = 9; a(9) = denominator(9/tau(9) + sigma(9)/9) = denominator(9/3 + 13/9) = denominator(40/9) = 9.
		

Crossrefs

Programs

  • Magma
    [Denominator((n/(#[d: d in Divisors(n)]))+(SumOfDivisors(n)/n)): n in [1..1000]]
    
  • PARI
    for(n=1, 100, s=n/numdiv(n); t=sigma(n)/n; print1(denominator(s+t),", ")) \\ Derek Orr, Aug 15 2014

A245784 Numerator of (n/tau(n) + sigma(n)/n).

Original entry on oeis.org

2, 5, 17, 37, 37, 7, 65, 31, 40, 43, 145, 13, 197, 73, 107, 411, 325, 31, 401, 163, 569, 157, 577, 11, 718, 211, 889, 20, 901, 123, 1025, 701, 427, 343, 1417, 235, 1445, 421, 1745, 29, 1765, 211, 1937, 305, 277, 601, 2305, 443, 2572, 1529, 963, 823, 2917, 323
Offset: 1

Views

Author

Jaroslav Krizek, Aug 15 2014

Keywords

Comments

Numerator of (n/A000005(n) + A000203(n)/n).
See A245785 - denominator of (n/tau(n) + sigma(n)/n).

Examples

			For n = 9; a(9) = numerator(9/tau(9) + sigma(9)/9) = numerator(9/3 + 13/9) = numerator(40/9) = 40.
		

Crossrefs

Programs

  • Magma
    [Numerator((n/(#[d: d in Divisors(n)]))+(SumOfDivisors(n)/n)): n in [1..1000]]
    
  • PARI
    for(n=1, 100, s=n/numdiv(n); t=sigma(n)/n; print1(numerator(s+t),", ")) \\ Derek Orr, Aug 15 2014
Showing 1-3 of 3 results.