cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A245782 Refactorable multiply-perfect numbers.

Original entry on oeis.org

1, 672, 30240, 23569920, 45532800, 14182439040, 153003540480, 403031236608, 518666803200, 13661860101120, 740344994887680, 796928461056000, 212517062615531520, 87934476737668055040, 154345556085770649600, 170206605192656148480, 1161492388333469337600, 1802582780370364661760
Offset: 1

Views

Author

Jaroslav Krizek, Aug 01 2014

Keywords

Comments

Multiply-perfect numbers k (A007691) such that k / tau(k) is an integer.
Also multiply-perfect numbers k (A007691) such that (k / tau(k) - sigma(k) / k) = (k / A000005(k) - A000203(k) / k) is an integer.
Also multiply-perfect numbers k (A007691) such that (k / tau(k) + sigma(k) / k) = (k / A000005(k) + A000203(k) / k) is an integer.

Examples

			Multiply-perfect number 672 is in sequence because 672 / tau(672) = 28 (integer).
		

Crossrefs

Intersection of A033950 (refactorable numbers) and A007691 (multiply-perfect numbers).
Subsequence of A245778 and A245786.
Supersequence of A047728.

Programs

  • Magma
    [n:n in [A007691(n)] | (Denominator((n/(#[d: d in Divisors(n)]))-(SumOfDivisors(n)/n))) eq 1];
    
  • Mathematica
    q[n_] := Module[{d = DivisorSigma[0, n], s = DivisorSigma[1, n]}, Divisible[s, n] && Divisible[n, d]]; Select[Range[31000], q] (* Amiram Eldar, May 09 2024 *)
  • PARI
    isok(n) = !(n % numdiv(n)) && !(sigma(n) % n); \\ Michel Marcus, Aug 11 2014
    
  • PARI
    is(k) = {my(f = factor(k), s = sigma(f), d = numdiv(f)); !(s % k) && !(k % d);} \\ Amiram Eldar, May 09 2024

Extensions

a(14)-a(18) from Amiram Eldar, May 09 2024

A245776 Numerator of (n/tau(n) - sigma(n)/n).

Original entry on oeis.org

0, -1, 1, -5, 13, -1, 33, 1, 14, 7, 97, -1, 141, 25, 43, 101, 253, 5, 321, 37, 313, 85, 481, 1, 532, 127, 569, 8, 781, 27, 897, 323, 299, 235, 1033, 53, 1293, 301, 1297, 11, 1597, 83, 1761, 179, 173, 457, 2113, 133, 2230, 971, 771, 529, 2701, 163, 2737, 34, 2929, 751, 3361, 11, 3597, 865, 1115
Offset: 1

Views

Author

Jaroslav Krizek, Aug 01 2014

Keywords

Comments

Numerator of (n/A000005(n) - A000203(n)/n).
See A245777 - denominator of (n/tau(n) - sigma(n)/n).

Examples

			For n = 9; a(9) = numerator(9/tau(9) - sigma(9)/9) = numerator(9/3 - 13/9) = numerator(14/9) = 14.
		

Crossrefs

Programs

  • Magma
    [Numerator((n/(#[d: d in Divisors(n)]))-(SumOfDivisors(n)/n)): n in [1..1000]]
    
  • Mathematica
    a245776[n_Integer] :=
    Map[Numerator[#/DivisorSigma[0, #] - DivisorSigma[1, #]/#] &,
      Range[n]]; a245776[63] (* Michael De Vlieger, Aug 07 2014 *)
  • PARI
    vector(150, n, numerator(n/numdiv(n) - sigma(n)/n)) \\ Derek Orr, Aug 01 2014

Formula

a(n)/A245777(n) < 1 for numbers n in A245779.
a(n)/A245777(n) is an integer for numbers n in A245778.
a(n) = 1 for n = 3, 8 and 24.
a(n) < 0 for n = 2, 4, 6 and 12.

A245779 Numbers n such that (n/tau(n) - sigma(n)/n) < 1.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 18, 24
Offset: 1

Views

Author

Jaroslav Krizek, Aug 02 2014

Keywords

Comments

Numbers n such that A245776(n)/A245777(n) = n/A000005(n) - A000203(n)/n < 1.
Finite sequence with 10 terms.

Examples

			24 is in sequence because 24/tau(24) - sigma(24)/24 = 24/8 - 60/24 = 1/2.
		

Crossrefs

Programs

  • Magma
    [n:n in [1..1000000] | (Numerator((n /(#[d: d in Divisors(n)]))-(SumOfDivisors(n)/n))) / (Denominator((n/(#[d: d in Divisors(n)]))-(SumOfDivisors(n)/n))) lt 1]
    
  • Mathematica
    a245779[n_Integer] :=
    Select[Range[n],
      If[#/DivisorSigma[0, #] - DivisorSigma[1, #]/# < 1, True, False] &]; a245779[1000] (* Michael De Vlieger, Aug 07 2014 *)
    Select[Range[25],#/DivisorSigma[0,#]-DivisorSigma[1,#]/#<1&] (* Harvey P. Dale, Nov 21 2023 *)
  • PARI
    for(n=1,10^3, if(n/numdiv(n) - sigma(n)/n < 1, print1(n,", "))) \\ Derek Orr, Aug 02 2014

A245778 Numbers n such that k(n) = n/tau(n) - sigma(n)/n is an integer.

Original entry on oeis.org

1, 672, 4680, 30240, 435708, 23569920, 45532800, 4138364160, 14182439040, 53798734080, 153003540480, 403031236608, 518666803200
Offset: 1

Views

Author

Jaroslav Krizek, Aug 01 2014

Keywords

Comments

Numbers n such that A245776(n) / A245777(n) = (n / A000005(n) - A000203(n) / n) is an integer.
Sequence of integers k(n): 0, 25, 94, 311, 4031, 73652, 118571, …
Conjecture: subsequence of A216793.
Refactorable multiply-perfect numbers (A245782) are members of this sequence.
a(14) > 10^13. - Giovanni Resta, Jul 13 2015
The numbers 13661860101120 and 740344994887680 are also terms. - Giovanni Resta, Nov 14 2019

Examples

			672 is in sequence because 672 / tau(672) - sigma(672) / 672 = 672 / 24 - 2016 / 672 = 25 (integer).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..100000] | (Denominator((n/(#[d: d in Divisors(n)])) - (SumOfDivisors(n)/n)) eq 1)]
    
  • Maple
    select(n -> type(n/numtheory:-tau(n) - numtheory:-sigma(n)/n,integer), [$1..10^8]); # Robert Israel, Aug 03 2014
  • PARI
    for(n=1,10^8,s=n/numdiv(n);t=sigma(n)/n;if(floor(s-t)==s-t,print1(n,", "))) \\ Derek Orr, Aug 01 2014

Formula

A245777(a(n)) = 1.

Extensions

a(8)-a(13) from Giovanni Resta, Jul 13 2015

A245785 Denominator of (n/tau(n) + sigma(n)/n).

Original entry on oeis.org

1, 2, 6, 12, 10, 2, 14, 8, 9, 10, 22, 3, 26, 14, 20, 80, 34, 6, 38, 30, 84, 22, 46, 2, 75, 26, 108, 3, 58, 20, 62, 96, 44, 34, 140, 36, 74, 38, 156, 4, 82, 28, 86, 33, 30, 46, 94, 60, 147, 150, 68, 78, 106, 36, 220, 7, 228, 58, 118, 5, 122, 62, 126, 448, 260
Offset: 1

Views

Author

Jaroslav Krizek, Aug 15 2014

Keywords

Comments

Denominator of (n/A000005(n) + A000203(n)/n).
See A245784 - numerator of (n/tau(n) + sigma(n)/n).
A245784(n) / a(n) = integer for numbers n in A245786; a(n) = 1.
First deviation from A245777 (denominator of (n/tau(n) - sigma(n)/n)) is at a(300); a(300) = 25, A245777(300) = 75. Sequence of numbers n such that A245777(n) is not equal to a(n): 300, 768, 1452, 1764, 2100, 3468, 3900, 5376, 5700, 6084, 6348, 9075, 9300, ... See (Magma) [n: n in [1..10000] | (Denominator((n/(#[d: d in Divisors(n)]))+(SumOfDivisors(n)/n))) - (Denominator((n/(#[d: d in Divisors(n)]))-(SumOfDivisors(n)/n))) ne 0]

Examples

			For n = 9; a(9) = denominator(9/tau(9) + sigma(9)/9) = denominator(9/3 + 13/9) = denominator(40/9) = 9.
		

Crossrefs

Programs

  • Magma
    [Denominator((n/(#[d: d in Divisors(n)]))+(SumOfDivisors(n)/n)): n in [1..1000]]
    
  • PARI
    for(n=1, 100, s=n/numdiv(n); t=sigma(n)/n; print1(denominator(s+t),", ")) \\ Derek Orr, Aug 15 2014
Showing 1-5 of 5 results.