A245788 n times the number of 1's in the binary expansion of n.
0, 1, 2, 6, 4, 10, 12, 21, 8, 18, 20, 33, 24, 39, 42, 60, 16, 34, 36, 57, 40, 63, 66, 92, 48, 75, 78, 108, 84, 116, 120, 155, 32, 66, 68, 105, 72, 111, 114, 156, 80, 123, 126, 172, 132, 180, 184, 235, 96, 147, 150, 204, 156, 212, 216, 275, 168, 228, 232, 295, 240
Offset: 0
Examples
G.f. = x + 2*x^2 + 6*x^3 + 4*x^4 + 10*x^5 + 12*x6 + 21*x^7 + 8*x^8 + 18*x^9 + ...
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 0..1000
- Project Euler, Problem 759, sequence f(n).
Programs
-
Maple
a:= n -> n * convert(convert(n,base,2),`+`): seq(a(n),n=0..100); # Robert Israel, Aug 01 2014
-
Mathematica
Table[n*DigitCount[n,2,1],{n,0,100}] (* Harvey P. Dale, Dec 16 2014 *)
-
PARI
sumbit(n) = my(r);while(n>0,r+=n%2;n\=2);r a(n) = n*sumbit(n)
-
PARI
{a(n) = if( n<0, 0, n * sumdigits(n, 2))}; /* Michael Somos, Aug 05 2014 */ /* since version 2.6.0 */
-
Python
[n*bin(n)[2:].count('1') for n in range(1000)] # Chai Wah Wu, Aug 03 2014
Formula
a(2*n) = 2*a(n).
a(2*n+1) = 2*n + 1 + (2+1/n)*a(n). - Robert Israel, Aug 01 2014
G.f.: x * (d/dx) (1/(1 - x))*Sum_{k>=0} x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Mar 27 2018