cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245788 n times the number of 1's in the binary expansion of n.

Original entry on oeis.org

0, 1, 2, 6, 4, 10, 12, 21, 8, 18, 20, 33, 24, 39, 42, 60, 16, 34, 36, 57, 40, 63, 66, 92, 48, 75, 78, 108, 84, 116, 120, 155, 32, 66, 68, 105, 72, 111, 114, 156, 80, 123, 126, 172, 132, 180, 184, 235, 96, 147, 150, 204, 156, 212, 216, 275, 168, 228, 232, 295, 240
Offset: 0

Views

Author

Keywords

Examples

			G.f. = x + 2*x^2 + 6*x^3 + 4*x^4 + 10*x^5 + 12*x6 + 21*x^7 + 8*x^8 + 18*x^9 + ...
		

Crossrefs

Cf. A000120 (number of 1's), A057147 (decimal version).

Programs

  • Maple
    a:= n -> n * convert(convert(n,base,2),`+`):
    seq(a(n),n=0..100); # Robert Israel, Aug 01 2014
  • Mathematica
    Table[n*DigitCount[n,2,1],{n,0,100}] (* Harvey P. Dale, Dec 16 2014 *)
  • PARI
    sumbit(n) = my(r);while(n>0,r+=n%2;n\=2);r
    a(n) = n*sumbit(n)
    
  • PARI
    {a(n) = if( n<0, 0, n * sumdigits(n, 2))}; /* Michael Somos, Aug 05 2014 */ /* since version 2.6.0 */
    
  • Python
    [n*bin(n)[2:].count('1') for n in range(1000)] # Chai Wah Wu, Aug 03 2014

Formula

a(2*n) = 2*a(n).
a(2*n+1) = 2*n + 1 + (2+1/n)*a(n). - Robert Israel, Aug 01 2014
G.f.: x * (d/dx) (1/(1 - x))*Sum_{k>=0} x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Mar 27 2018