A245885 Decimal expansion of Gamma(7/2), where Gamma is Euler's gamma function.
3, 3, 2, 3, 3, 5, 0, 9, 7, 0, 4, 4, 7, 8, 4, 2, 5, 5, 1, 1, 8, 4, 0, 6, 4, 0, 3, 1, 2, 6, 4, 6, 4, 7, 2, 1, 7, 7, 4, 5, 4, 0, 5, 2, 3, 0, 2, 2, 9, 4, 7, 5, 8, 6, 5, 4, 0, 0, 8, 8, 9, 6, 0, 5, 9, 7, 4, 2, 0, 8, 6, 5, 8, 6, 0, 8, 1, 8, 5, 3, 4, 0, 0, 7, 8, 0, 3, 2, 4, 8, 1, 3, 8, 4, 7, 7, 1, 2, 4, 7, 6, 5, 5, 4
Offset: 1
Examples
3.3233509704478425511840640312646472177454052302294758654008896...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's MathWorld, Gamma Function
- Wikipedia, Particular values of the Gamma function
Programs
-
Mathematica
RealDigits[Gamma[7/2], 10, 104] // First
-
PARI
gammah(3) \\ Michel Marcus, Feb 11 2016
Formula
Gamma(7/2) = (15/8)*sqrt(Pi) = (5/2)*A245884.
Equals Integral_{x=0..oo} exp(-x^(2/5)) dx. - Ilya Gutkovskiy, Apr 10 2024
Equals 30*A019718. - Hugo Pfoertner, Apr 10 2024