cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246010 a(n) = floor(5*prime(n)^2 / 4).

Original entry on oeis.org

5, 11, 31, 61, 151, 211, 361, 451, 661, 1051, 1201, 1711, 2101, 2311, 2761, 3511, 4351, 4651, 5611, 6301, 6661, 7801, 8611, 9901, 11761, 12751, 13261, 14311, 14851, 15961, 20161, 21451, 23461, 24151, 27751, 28501, 30811, 33211
Offset: 1

Views

Author

Freimut Marschner, Sep 28 2014

Keywords

Comments

Let f(x) = -x^2 + b*x + b^2 be a polynomial function with b = prime(n), n >= 1, then the vertex of the graph of f(x) is at the point (vx;f(vx)) = (b/2;5*b^2/4) with f’(vx) = -2*vx + b = 0. If b = n, n >= 0, then the sequence of the vertex of this polynomial is A032527, the concentric pentagonal numbers: floor( 5*n^2 / 4). So a(n) = floor( 5*prime(n)^2 / 4), n >= 1 is a subsequence of A032527.

Examples

			a(4) = floor(5*7^2 / 4) = floor(61.25) = 61.
		

Crossrefs

Cf. A032527 (the concentric pentagonal numbers: floor( 5*n^2 / 4)).

Programs

  • Magma
    [Floor(5*NthPrime(n)^2 / 4): n in [1..40]]; // Vincenzo Librandi, Oct 21 2014
  • Mathematica
    Floor[(5*Prime[Range[40]]^2)/4] (* Harvey P. Dale, Sep 15 2019 *)
  • PARI
    vector(100,n,floor(5*prime(n)^2/4)) \\ Derek Orr, Sep 30 2014
    

Formula

a(n) = A032527(A000040(n)). - Michel Marcus, Sep 30 2014