cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246063 First occurrence of n in sequence A112329.

Original entry on oeis.org

2, 1, 3, 9, 15, 64, 45, 256, 96, 144, 192, 4096, 240, 16384, 768, 576, 480, 262144, 720, 1048576, 960, 2304, 12288, 16777216, 1440, 5184, 49152, 3600, 3840, 1073741824, 2880, 4294967296, 3360, 36864, 786432, 20736, 5040, 274877906944, 3145728, 147456, 6720
Offset: 0

Views

Author

Ray Chandler, Aug 24 2014

Keywords

Comments

Inspired by a comment from Robert G. Wilson v in sequence A112329.

Crossrefs

Programs

  • Mathematica
    g[lst_,p_]:=Module[{t,i,j},Union[Flatten[Table[t=lst[[i]];t[[j]]=p*t[[j]];Sort[t],{i,Length[lst]},{j,Length[lst[[i]]]}],1],Table[Sort[Append[lst[[i]],p]],{i,Length[lst]}]]];f[n_]:=Module[{i,j,p,e,lst={{}}},{p,e}=Transpose[FactorInteger[n]];Do[lst=g[lst,p[[i]]],{i,Length[p]},{j,e[[i]]}];lst];
    (* above factor functions from T. D. Noe in A162247 *)
    nmax=100;
    a1={2,1,3};
    Do[
    least=Infinity;
    fn=f[n];
    Do[
    exps=Reverse[fnitem]-1;
    odd=even=1;
    cnt=0;
    Do[
    cnt++;
    odd*=(Prime[cnt+1]^exp);
    even*=(Prime[cnt]^exp);
    ,{exp,exps}];
    least=Min[least,odd,4even];
    ,{fnitem,fn}];
    AppendTo[a1,least];
    ,{n,3,nmax}];
    a1
  • PARI
    d(n) = if (denominator(n)==1, numdiv(n), 0);
    f(n) = numdiv(n) - 2*d(n/2) + 2*d(n/4);
    a(n) = {my(k = 1); while (f(k) != n, k++); k;} \\ Michel Marcus, Jul 30 2017

Formula

a(p) = 2^(p+1) for prime p >= 5.