cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A246106 Number A(n,k) of inequivalent n X n matrices with entries from [k], where equivalence means permutations of rows or columns; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 7, 1, 0, 1, 4, 27, 36, 1, 0, 1, 5, 76, 738, 317, 1, 0, 1, 6, 175, 8240, 90492, 5624, 1, 0, 1, 7, 351, 57675, 7880456, 64796982, 251610, 1, 0, 1, 8, 637, 289716, 270656150, 79846389608, 302752867740, 33642660, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 13 2014

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,    1,        1,           1,              1, ...
  0, 1,    2,        3,           4,              5, ...
  0, 1,    7,       27,          76,            175, ...
  0, 1,   36,      738,        8240,          57675, ...
  0, 1,  317,    90492,     7880456,      270656150, ...
  0, 1, 5624, 64796982, 79846389608, 20834113243925, ...
		

Crossrefs

Main diagonal gives A246107.
A028657, A242106, A353585 are related tables.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [[]],
          `if`(i<1, [], [b(n, i-1)[], seq(map(p->[p[], [i, j]],
           b(n-i*j, i-1))[], j=1..n/i)]))
        end:
    A:= proc(n, k) option remember; add(add(k^add(add(i[2]*j[2]*
          igcd(i[1], j[1]), j=t), i=s) /mul(i[1]^i[2]*i[2]!, i=s)
          /mul(i[1]^i[2]*i[2]!, i=t), t=b(n$2)), s=b(n$2))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • PARI
    A246106(n,k)=A353585(k,n,n) \\ M. F. Hasler, May 01 2022

Formula

A(n,k) = Sum_{i=0..k} C(k,i) * A256069(n,i).
A(n,k) = Sum_{p,q in P(n)} k^Sum_{i in p, j in q} gcd(i, j) / (N(p)*N(q)) where N(p) = Product_{distinct parts x in p} x^m(x)*m(x)!, m(x) = multiplicity of x in p. - M. F. Hasler, Apr 30 2022 [corrected by Anders Kaseorg, Oct 04 2024]

A360660 Number of inequivalent n X n {0,1} matrices modulo permutation of the rows, with exactly n 1's.

Original entry on oeis.org

1, 1, 4, 20, 133, 1027, 9259, 94033, 1062814, 13176444, 177427145, 2573224238, 39924120823, 658921572675, 11513293227271, 212109149134617, 4105637511110979, 83238756058333277, 1762856698153603049, 38905470655863251479, 892840913430059075405
Offset: 0

Views

Author

Alois P. Heinz, Feb 15 2023

Keywords

Comments

Also the number of multisets of n words of length n over binary alphabet where the first letter occurs n times. E.g., a(2) = 4: {aa,bb}, {ab,ab}, {ab,ba}, {ba,ba}.

Examples

			a(3) = 20: [111/000/000], [110/100/000], [110/010/000], [110/001/000], [101/100/000], [101/010/000], [101/001/000], [100/100/100], [100/100/010], [100/100/001], [100/011/000], [100/010/010], [100/010/001], [100/001/001], [011/010/000], [011/001/000], [010/010/010], [010/010/001], [010/001/001], [001/001/001].
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
          g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i)+k-1, k), k=0..j))))
        end:
    a:= n-> coeff(g(n$3), x, n):
    seq(a(n), n=0..20);
  • Mathematica
    g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Binomial[n, i] + k - 1, k], {k, 0, j}]]]];
    a[n_] := SeriesCoefficient[g[n, n, n], {x, 0, n}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 28 2023, after Alois P. Heinz *)
    Table[SeriesCoefficient[Product[1/(1 - x^k)^Binomial[n, k], {k, 1, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 15 2025 *)

Formula

a(n) = A220886(n,n).
a(n) = [x^n] Product_{k=1..n} 1/(1 - x^k)^binomial(n,k). - Vaclav Kotesovec, Apr 15 2025
Showing 1-2 of 2 results.