cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A154323 Central coefficients of number triangle A113582.

Original entry on oeis.org

1, 2, 10, 37, 101, 226, 442, 785, 1297, 2026, 3026, 4357, 6085, 8282, 11026, 14401, 18497, 23410, 29242, 36101, 44101, 53362, 64010, 76177, 90001, 105626, 123202, 142885, 164837, 189226, 216226, 246017, 278785, 314722, 354026, 396901, 443557, 494210, 549082, 608401, 672401, 741322, 815410, 894917, 980101
Offset: 0

Views

Author

Paul Barry, Jan 07 2009

Keywords

Comments

a(n) equals n!^3 times the determinant of the n X n matrix whose (i,j)-entry is KroneckerDelta[i, j] (((i^3 + 1)/(i^3)) - 1) + 1. - John M. Campbell, May 20 2011
Let b(0)=b(1)=1; b(n)=max(b(n-1)+(n-1)^3, b(n-2)+(n-2)^3); then a(n)=b(n+1). - Yalcin Aktar, Jul 28 2011
a(n-1) is the number of sets of n words of length n over binary alphabet where the first letter occurs n times. a(2) = 10: {aab,abb,bbb}, {aab,bab,bbb}, {aab,bba,bbb}, {aba,abb,bbb}, {aba,bab,bbb}, {aba,bba,bbb}, {abb,baa,bbb}, {abb,bab,bba}, {baa,bab,bbb}, {baa,bba,bbb}. - Alois P. Heinz, Feb 16 2023

Crossrefs

Main diagonal of A360693.

Programs

  • Magma
    [(n^4 + 2*n^3 + n^2 + 4)/4: n in [0..40]]; // Vincenzo Librandi, Feb 13 2015
  • Mathematica
    s = 1; lst = {s}; Do[s += n^3; AppendTo[lst, s], {n, 1, 42, 1}]; lst (* Zerinvary Lajos, Jul 12 2009 *)
    Table[n!^3*Det[Array[KroneckerDelta[#1,#2](((#1^3+1)/(#1^3))-1)+1&,{n,n}]],{n,1,30}] (* John M. Campbell, May 20 2011 *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {1, 2, 10, 37, 101}, 25] (* or *) Table[(n^4 + 2*n^3 + n^2 + 4)/4, {n,0,25}] (* G. C. Greubel, Sep 11 2016 *)

Formula

a(n) = (n^4 + 2*n^3 + n^2 + 4)/4.
G.f.: (1 - 3*x + 10*x^2 - 3*x^3 + x^4)/(1-x)^5.
a(n) = 1 + C(n+1,2)^2 = 1 + A000537(n).
From G. C. Greubel, Sep 11 2016: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
E.g.f.: (1/4)*(4 + 4*x + 14*x^2 + 8*x^3 + x^4)*exp(x). (End)
a(n) = a(n-1)+n^3. - Charles U. Lonappan, Jun 09 2021

A220886 Irregular triangular array read by rows: T(n,k) is the number of inequivalent n X n {0,1} matrices modulo permutation of the rows, containing exactly k 1's; n>=0, 0<=k<=n^2.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 2, 1, 1, 3, 9, 20, 27, 27, 20, 9, 3, 1, 1, 4, 16, 48, 133, 272, 468, 636, 720, 636, 468, 272, 133, 48, 16, 4, 1, 1, 5, 25, 95, 330, 1027, 2780, 6550, 13375, 23700, 36403, 48405, 55800, 55800, 48405, 36403, 23700, 13375, 6550, 2780, 1027, 330, 95, 25, 5, 1
Offset: 0

Views

Author

Geoffrey Critzer, Feb 20 2013

Keywords

Comments

In other words, two matrices are considered equivalent if one can be obtained from the other by some sequence of interchanges of the rows.

Examples

			T(2,2) = 4 because we have: {{0,0},{1,1}}; {{0,1},{1,0}}; {{0,1},{0,1}}; {{1,0},{1,0}} (where the first two matrices were arbitrarily selected as class representatives).
Triangle T(n,k) begins:
  1;
  1, 1;
  1, 2,  4,  2,   1;
  1, 3,  9, 20,  27,  27,  20,   9,   3,   1;
  1, 4, 16, 48, 133, 272, 468, 636, 720, 636, 468, 272, 133, 48, 16, 4, 1;
  ...
		

Crossrefs

Row sums are A060690.
Columns k=0-3 give: A000012, A000027, A000290 (n>=2), A203552 (n>=3).
Main diagonal gives A360660.
Cf. A360693.

Programs

  • Maple
    g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
          g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i)+k-1, k), k=0..j))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(g(n$3)):
    seq(T(n), n=0..5);  # Alois P. Heinz, Feb 15 2023
  • Mathematica
    nn=100;Table[CoefficientList[Series[CycleIndex[SymmetricGroup[n],s]/.Table[s[i]->(1+x^i)^n,{i,1,n}],{x,0,nn}],x],{n,0,5}]//Grid
    (* Second program: *)
    g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Binomial[n, i] + k - 1, k], {k, 0, j}]]]];
    T[n_] := CoefficientList[g[n, n, n], x];
    Table[T[n], {n, 0, 5}] // Flatten (* Jean-François Alcover, May 28 2023, after Alois P. Heinz *)

A383073 a(n) = [x^n] Product_{k=1..n} (1 + x^k)^binomial(n,k).

Original entry on oeis.org

1, 1, 2, 11, 69, 552, 5133, 53804, 626440, 7979043, 110074741, 1631532542, 25813521836, 433619035254, 7698641650937, 143908414079881, 2822753485000135, 57930283521990154, 1240695879627856673, 27666701629865989070, 641049490249340264699
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 15 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + x^k)^Binomial[n, k], {k, 1, n}], {x, 0, n}], {n, 0, 20}]
Showing 1-3 of 3 results.