A154323
Central coefficients of number triangle A113582.
Original entry on oeis.org
1, 2, 10, 37, 101, 226, 442, 785, 1297, 2026, 3026, 4357, 6085, 8282, 11026, 14401, 18497, 23410, 29242, 36101, 44101, 53362, 64010, 76177, 90001, 105626, 123202, 142885, 164837, 189226, 216226, 246017, 278785, 314722, 354026, 396901, 443557, 494210, 549082, 608401, 672401, 741322, 815410, 894917, 980101
Offset: 0
-
[(n^4 + 2*n^3 + n^2 + 4)/4: n in [0..40]]; // Vincenzo Librandi, Feb 13 2015
-
s = 1; lst = {s}; Do[s += n^3; AppendTo[lst, s], {n, 1, 42, 1}]; lst (* Zerinvary Lajos, Jul 12 2009 *)
Table[n!^3*Det[Array[KroneckerDelta[#1,#2](((#1^3+1)/(#1^3))-1)+1&,{n,n}]],{n,1,30}] (* John M. Campbell, May 20 2011 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 2, 10, 37, 101}, 25] (* or *) Table[(n^4 + 2*n^3 + n^2 + 4)/4, {n,0,25}] (* G. C. Greubel, Sep 11 2016 *)
A220886
Irregular triangular array read by rows: T(n,k) is the number of inequivalent n X n {0,1} matrices modulo permutation of the rows, containing exactly k 1's; n>=0, 0<=k<=n^2.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 2, 1, 1, 3, 9, 20, 27, 27, 20, 9, 3, 1, 1, 4, 16, 48, 133, 272, 468, 636, 720, 636, 468, 272, 133, 48, 16, 4, 1, 1, 5, 25, 95, 330, 1027, 2780, 6550, 13375, 23700, 36403, 48405, 55800, 55800, 48405, 36403, 23700, 13375, 6550, 2780, 1027, 330, 95, 25, 5, 1
Offset: 0
T(2,2) = 4 because we have: {{0,0},{1,1}}; {{0,1},{1,0}}; {{0,1},{0,1}}; {{1,0},{1,0}} (where the first two matrices were arbitrarily selected as class representatives).
Triangle T(n,k) begins:
1;
1, 1;
1, 2, 4, 2, 1;
1, 3, 9, 20, 27, 27, 20, 9, 3, 1;
1, 4, 16, 48, 133, 272, 468, 636, 720, 636, 468, 272, 133, 48, 16, 4, 1;
...
-
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i)+k-1, k), k=0..j))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(g(n$3)):
seq(T(n), n=0..5); # Alois P. Heinz, Feb 15 2023
-
nn=100;Table[CoefficientList[Series[CycleIndex[SymmetricGroup[n],s]/.Table[s[i]->(1+x^i)^n,{i,1,n}],{x,0,nn}],x],{n,0,5}]//Grid
(* Second program: *)
g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Binomial[n, i] + k - 1, k], {k, 0, j}]]]];
T[n_] := CoefficientList[g[n, n, n], x];
Table[T[n], {n, 0, 5}] // Flatten (* Jean-François Alcover, May 28 2023, after Alois P. Heinz *)
A383073
a(n) = [x^n] Product_{k=1..n} (1 + x^k)^binomial(n,k).
Original entry on oeis.org
1, 1, 2, 11, 69, 552, 5133, 53804, 626440, 7979043, 110074741, 1631532542, 25813521836, 433619035254, 7698641650937, 143908414079881, 2822753485000135, 57930283521990154, 1240695879627856673, 27666701629865989070, 641049490249340264699
Offset: 0
-
Table[SeriesCoefficient[Product[(1 + x^k)^Binomial[n, k], {k, 1, n}], {x, 0, n}], {n, 0, 20}]
Showing 1-3 of 3 results.
Comments