A060690
a(n) = binomial(2^n + n - 1, n).
Original entry on oeis.org
1, 2, 10, 120, 3876, 376992, 119877472, 131254487936, 509850594887712, 7145544812472168960, 364974894538906616240640, 68409601066028072105113098240, 47312269462735023248040155132636160, 121317088003402776955124829814219234385920
Offset: 0
Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 19 2001
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2), this sequence (1,-1),
A132683 (1,0),
A132684 (1,1),
A132685 (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n +n-1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
with(combinat): for n from 0 to 20 do printf(`%d,`,binomial(2^n+n-1, n)) od:
-
Table[Binomial[2^n+n-1,n],{n,0,20}] (* Harvey P. Dale, Apr 19 2012 *)
-
a(n)=binomial(2^n+n-1,n)
-
{a(n)=polcoeff(sum(k=0,n,(-log(1-2^k*x +x*O(x^n)))^k/k!),n)} \\ Paul D. Hanna, Dec 29 2007
-
a(n) = sum(k=0, n, stirling(n,k,1)*(2^n+n-1)^k/n!); \\ Paul D. Hanna, Nov 20 2014
-
from math import comb
def A060690(n): return comb((1<Chai Wah Wu, Jul 05 2024
-
[binomial(2^n +n-1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
A360693
Number T(n,k) of sets of n words of length n over binary alphabet where the first letter occurs k times; triangle T(n,k), n>=0, n-signum(n)<=k<=n*(n-1)+signum(n), read by rows.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 3, 10, 15, 15, 10, 3, 4, 37, 108, 228, 336, 394, 336, 228, 108, 37, 4, 5, 101, 600, 2150, 5645, 11680, 19752, 27820, 32935, 32935, 27820, 19752, 11680, 5645, 2150, 600, 101, 5, 6, 226, 2490, 14745, 61770, 200529, 535674, 1211485, 2368200
Offset: 0
T(2,3) = 2: {aa,ab}, {aa,ba}.
T(3,3) = 10: {aab,abb,bbb}, {aab,bab,bbb}, {aab,bba,bbb}, {aba,abb,bbb}, {aba,bab,bbb}, {aba,bba,bbb}, {abb,baa,bbb}, {abb,bab,bba}, {baa,bab,bbb}, {baa,bba,bbb}.
T(4,3) = 4: {abbb,babb,bbab,bbbb}, {abbb,babb,bbba,bbbb}, {abbb,bbab,bbba,bbbb}, {babb,bbab,bbba,bbbb}.
Triangle T(n,k) begins:
1;
1, 1;
. 2, 2, 2;
. . 3, 10, 15, 15, 10, 3;
. . . 4, 37, 108, 228, 336, 394, 336, 228, 108, 37, 4;
. . . . 5, 101, 600, 2150, 5645, 11680, 19752, 27820, 32935, 32935, ...;
...
Main diagonal T(n,n) gives
A154323(n-1) for n>=1.
T(n,n-1) gives
A000027(n) for n>=1.
-
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i), k), k=0..j))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=n-signum(n)..n*(n-1)+signum(n)))(g(n$3)):
seq(T(n), n=0..6);
-
g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Binomial[n, i], k], {k, 0, j}]]]];
T[n_] := Table[Coefficient[#, x, i], {i, n - Sign[n], n(n - 1) + Sign[n]}]&[g[n, n, n]];
Table[T[n], {n, 0, 6}] // Flatten (* Jean-François Alcover, May 26 2023, after Alois P. Heinz *)
A360660
Number of inequivalent n X n {0,1} matrices modulo permutation of the rows, with exactly n 1's.
Original entry on oeis.org
1, 1, 4, 20, 133, 1027, 9259, 94033, 1062814, 13176444, 177427145, 2573224238, 39924120823, 658921572675, 11513293227271, 212109149134617, 4105637511110979, 83238756058333277, 1762856698153603049, 38905470655863251479, 892840913430059075405
Offset: 0
a(3) = 20: [111/000/000], [110/100/000], [110/010/000], [110/001/000], [101/100/000], [101/010/000], [101/001/000], [100/100/100], [100/100/010], [100/100/001], [100/011/000], [100/010/010], [100/010/001], [100/001/001], [011/010/000], [011/001/000], [010/010/010], [010/010/001], [010/001/001], [001/001/001].
-
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i)+k-1, k), k=0..j))))
end:
a:= n-> coeff(g(n$3), x, n):
seq(a(n), n=0..20);
-
g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Binomial[n, i] + k - 1, k], {k, 0, j}]]]];
a[n_] := SeriesCoefficient[g[n, n, n], {x, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 28 2023, after Alois P. Heinz *)
Table[SeriesCoefficient[Product[1/(1 - x^k)^Binomial[n, k], {k, 1, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 15 2025 *)
Showing 1-3 of 3 results.
Comments