A154323
Central coefficients of number triangle A113582.
Original entry on oeis.org
1, 2, 10, 37, 101, 226, 442, 785, 1297, 2026, 3026, 4357, 6085, 8282, 11026, 14401, 18497, 23410, 29242, 36101, 44101, 53362, 64010, 76177, 90001, 105626, 123202, 142885, 164837, 189226, 216226, 246017, 278785, 314722, 354026, 396901, 443557, 494210, 549082, 608401, 672401, 741322, 815410, 894917, 980101
Offset: 0
-
[(n^4 + 2*n^3 + n^2 + 4)/4: n in [0..40]]; // Vincenzo Librandi, Feb 13 2015
-
s = 1; lst = {s}; Do[s += n^3; AppendTo[lst, s], {n, 1, 42, 1}]; lst (* Zerinvary Lajos, Jul 12 2009 *)
Table[n!^3*Det[Array[KroneckerDelta[#1,#2](((#1^3+1)/(#1^3))-1)+1&,{n,n}]],{n,1,30}] (* John M. Campbell, May 20 2011 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 2, 10, 37, 101}, 25] (* or *) Table[(n^4 + 2*n^3 + n^2 + 4)/4, {n,0,25}] (* G. C. Greubel, Sep 11 2016 *)
A220886
Irregular triangular array read by rows: T(n,k) is the number of inequivalent n X n {0,1} matrices modulo permutation of the rows, containing exactly k 1's; n>=0, 0<=k<=n^2.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 2, 1, 1, 3, 9, 20, 27, 27, 20, 9, 3, 1, 1, 4, 16, 48, 133, 272, 468, 636, 720, 636, 468, 272, 133, 48, 16, 4, 1, 1, 5, 25, 95, 330, 1027, 2780, 6550, 13375, 23700, 36403, 48405, 55800, 55800, 48405, 36403, 23700, 13375, 6550, 2780, 1027, 330, 95, 25, 5, 1
Offset: 0
T(2,2) = 4 because we have: {{0,0},{1,1}}; {{0,1},{1,0}}; {{0,1},{0,1}}; {{1,0},{1,0}} (where the first two matrices were arbitrarily selected as class representatives).
Triangle T(n,k) begins:
1;
1, 1;
1, 2, 4, 2, 1;
1, 3, 9, 20, 27, 27, 20, 9, 3, 1;
1, 4, 16, 48, 133, 272, 468, 636, 720, 636, 468, 272, 133, 48, 16, 4, 1;
...
-
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i)+k-1, k), k=0..j))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(g(n$3)):
seq(T(n), n=0..5); # Alois P. Heinz, Feb 15 2023
-
nn=100;Table[CoefficientList[Series[CycleIndex[SymmetricGroup[n],s]/.Table[s[i]->(1+x^i)^n,{i,1,n}],{x,0,nn}],x],{n,0,5}]//Grid
(* Second program: *)
g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Binomial[n, i] + k - 1, k], {k, 0, j}]]]];
T[n_] := CoefficientList[g[n, n, n], x];
Table[T[n], {n, 0, 5}] // Flatten (* Jean-François Alcover, May 28 2023, after Alois P. Heinz *)
A360695
Total number of sets of k words of length k over binary alphabet with exactly n occurrences of the first letter in the set, summed over all k >= 0.
Original entry on oeis.org
2, 3, 5, 16, 57, 230, 1071, 5429, 29810, 175718, 1101090, 7294593, 50829712, 370975443, 2826022446, 22403032310, 184339146428, 1570830751662, 13835026646912, 125719891784479, 1176838995406439, 11331919317891519, 112100167281082176, 1137938904082103310
Offset: 0
a(0) = 2: {}, {b}.
a(1) = 3: {a}, {ab,bb}, {ba,bb}.
a(3) = 16: {aa,ab}, {aa,ba}, {aab,abb,bbb}, {aab,bab,bbb}, {aab,bba,bbb}, {aba,abb,bbb}, {aba,bab,bbb}, {aba,bba,bbb}, {abb,baa,bbb}, {abb,bab,bba}, {baa,bab,bbb}, {baa,bba,bbb}, {abbb,babb,bbab,bbbb}, {abbb,babb,bbba,bbbb}, {abbb,bbab,bbba,bbbb}, {babb,bbab,bbba,bbbb}.
-
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i) , k), k=0..j))))
end:
a:= n-> add(coeff(g(k$3), x, n), k=0..n+1):
seq(a(n), n=0..23);
-
g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Binomial[n, i] , k], {k, 0, j}]]]];
a[n_] := Sum[Coefficient[g[k, k, k], x, n], {k, 0, n + 1}];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Dec 13 2023, after Alois P. Heinz *)
A360702
Number of sets of 2n words of length 2n over binary alphabet where each letter occurs 2n^2 times.
Original entry on oeis.org
1, 2, 394, 10247250, 41192135957378, 26708408307353573010350, 3044454667114388718324075325130428, 65233919825974729088553743803268484284650384722, 275236371094876077407367002758415347571615535684540339803854604
Offset: 0
a(0) = 1: {}.
a(1) = 2: {aa,bb}, {ab,ba}.
-
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i), k), k=0..j))))
end:
a:= n-> coeff(g(2*n$3), x, 2*n^2):
seq(a(n), n=0..10);
Showing 1-4 of 4 results.
Comments