A360693
Number T(n,k) of sets of n words of length n over binary alphabet where the first letter occurs k times; triangle T(n,k), n>=0, n-signum(n)<=k<=n*(n-1)+signum(n), read by rows.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 3, 10, 15, 15, 10, 3, 4, 37, 108, 228, 336, 394, 336, 228, 108, 37, 4, 5, 101, 600, 2150, 5645, 11680, 19752, 27820, 32935, 32935, 27820, 19752, 11680, 5645, 2150, 600, 101, 5, 6, 226, 2490, 14745, 61770, 200529, 535674, 1211485, 2368200
Offset: 0
T(2,3) = 2: {aa,ab}, {aa,ba}.
T(3,3) = 10: {aab,abb,bbb}, {aab,bab,bbb}, {aab,bba,bbb}, {aba,abb,bbb}, {aba,bab,bbb}, {aba,bba,bbb}, {abb,baa,bbb}, {abb,bab,bba}, {baa,bab,bbb}, {baa,bba,bbb}.
T(4,3) = 4: {abbb,babb,bbab,bbbb}, {abbb,babb,bbba,bbbb}, {abbb,bbab,bbba,bbbb}, {babb,bbab,bbba,bbbb}.
Triangle T(n,k) begins:
1;
1, 1;
. 2, 2, 2;
. . 3, 10, 15, 15, 10, 3;
. . . 4, 37, 108, 228, 336, 394, 336, 228, 108, 37, 4;
. . . . 5, 101, 600, 2150, 5645, 11680, 19752, 27820, 32935, 32935, ...;
...
Main diagonal T(n,n) gives
A154323(n-1) for n>=1.
T(n,n-1) gives
A000027(n) for n>=1.
-
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i), k), k=0..j))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=n-signum(n)..n*(n-1)+signum(n)))(g(n$3)):
seq(T(n), n=0..6);
-
g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Binomial[n, i], k], {k, 0, j}]]]];
T[n_] := Table[Coefficient[#, x, i], {i, n - Sign[n], n(n - 1) + Sign[n]}]&[g[n, n, n]];
Table[T[n], {n, 0, 6}] // Flatten (* Jean-François Alcover, May 26 2023, after Alois P. Heinz *)
A113582
Triangle T(n,m) read by rows: T(n,m) = (n - m)*(n - m + 1)*m*(m + 1)/4 + 1.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 7, 10, 7, 1, 1, 11, 19, 19, 11, 1, 1, 16, 31, 37, 31, 16, 1, 1, 22, 46, 61, 61, 46, 22, 1, 1, 29, 64, 91, 101, 91, 64, 29, 1, 1, 37, 85, 127, 151, 151, 127, 85, 37, 1, 1, 46, 109, 169, 211, 226, 211, 169, 109, 46, 1
Offset: 1
{1},
{1, 1},
{1, 2, 1},
{1, 4, 4, 1},
{1, 7, 10, 7, 1},
{1, 11, 19, 19, 11, 1},
{1, 16, 31, 37, 31, 16, 1},
{1, 22, 46, 61, 61, 46, 22, 1},
{1, 29, 64, 91, 101, 91, 64, 29, 1},
{1, 37, 85, 127, 151, 151, 127, 85, 37, 1},
{1, 46, 109, 169, 211, 226, 211, 169, 109, 46, 1}
-
/* As triangle: */ [[(n-m)*(n-m+1)*m*(m+1)/4+1: m in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 12 2016
-
t[n_, m_] = (n - m)*(n - m + 1)*m*(m + 1)/4 + 1; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]//Flatten
-
for(n=0,15, for(k=0,n, print1((n-k)*(n-k+1)*k*(k+1)/4 + 1, ", "))) \\ G. C. Greubel, Aug 31 2018
A360660
Number of inequivalent n X n {0,1} matrices modulo permutation of the rows, with exactly n 1's.
Original entry on oeis.org
1, 1, 4, 20, 133, 1027, 9259, 94033, 1062814, 13176444, 177427145, 2573224238, 39924120823, 658921572675, 11513293227271, 212109149134617, 4105637511110979, 83238756058333277, 1762856698153603049, 38905470655863251479, 892840913430059075405
Offset: 0
a(3) = 20: [111/000/000], [110/100/000], [110/010/000], [110/001/000], [101/100/000], [101/010/000], [101/001/000], [100/100/100], [100/100/010], [100/100/001], [100/011/000], [100/010/010], [100/010/001], [100/001/001], [011/010/000], [011/001/000], [010/010/010], [010/010/001], [010/001/001], [001/001/001].
-
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i)+k-1, k), k=0..j))))
end:
a:= n-> coeff(g(n$3), x, n):
seq(a(n), n=0..20);
-
g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Binomial[n, i] + k - 1, k], {k, 0, j}]]]];
a[n_] := SeriesCoefficient[g[n, n, n], {x, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 28 2023, after Alois P. Heinz *)
Table[SeriesCoefficient[Product[1/(1 - x^k)^Binomial[n, k], {k, 1, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 15 2025 *)
A262182
Prime numbers of the form (n*(n+1)/2)^2 + 1.
Original entry on oeis.org
2, 37, 101, 1297, 4357, 14401, 44101, 90001, 164837, 246017, 608401, 894917, 1382977, 4326401, 8122501, 8561477, 9985601, 10497601, 38638657, 46049797, 52707601, 84272401, 121572677, 146168101, 165894401, 201526417, 259532101, 289680401, 404010001, 428738437
Offset: 1
-
Select[Accumulate[Range[250]]^2+1,PrimeQ] (* Harvey P. Dale, Nov 14 2024 *)
-
for(n=1, 1e3, if(isprime(k = (n*(n+1)/2)^2+1), print1(k", "))) \\ Altug Alkan, Oct 02 2015
-
def prime(n):
if n == 1: return True
d = n + 1
c = n - 1
while c > 0 and d % c:
d += n
c -= 1
return bool(c == 1)
n = 1
i = 1
while i <= 500:
target = (i * (i + 1)) // 2
if prime(target):
print(n, target*target+1)
n += 1
i += 1
# Jean C. Lambry, Oct 06 2015
A263689
a(n) = (2*n^6 - 6*n^5 + 5*n^4 - n^2 + 12)/12.
Original entry on oeis.org
1, 1, 2, 34, 277, 1301, 4426, 12202, 29009, 61777, 120826, 220826, 381877, 630709, 1002002, 1539826, 2299201, 3347777, 4767634, 6657202, 9133301, 12333301, 16417402, 21571034, 28007377, 35970001, 45735626, 57617002, 71965909, 89176277, 109687426, 133987426, 162616577, 196171009, 235306402, 280741826
Offset: 0
a(0) = 1,
a(1) = 0^5 + 1 = 1,
a(2) = 1^5 + 1 = 2,
a(3) = 2^5 + 2 = 34,
a(4) = 3^5 + 34 = 227,
a(5) = 4^5 + 227 = 1301, etc.
-
Table[(1/12) (12 + (-1 + n)^2 n^2 (-1 + 2 (-1 + n) n)), {n, 0, 35}]
-
first(m)=vector(m,n,n--;(2*n^6 - 6*n^5 + 5*n^4 - n^2 + 12)/12) \\ Anders Hellström, Nov 20 2015
A267691
a(n) = (n + 1)*(6*n^4 - 21*n^3 + 31*n^2 - 31*n + 30)/30.
Original entry on oeis.org
1, 1, 2, 18, 99, 355, 980, 2276, 4677, 8773, 15334, 25334, 39975, 60711, 89272, 127688, 178313, 243849, 327370, 432346, 562667, 722667, 917148, 1151404, 1431245, 1763021, 2153646, 2610622, 3142063, 3756719, 4464000, 5274000, 6197521, 7246097, 8432018, 9768354
Offset: 0
a(0) = 1,
a(1) = 1 + 0^4 = 1,
a(2) = 1 + 1^4 = 2,
a(3) = 2 + 2^4 = 18,
a(4) = 18+ 3^4 = 99, etc.
-
[(n+1)*(6*n^4-21*n^3+31*n^2-31*n+30)/30: n in [0..35]]; // Vincenzo Librandi, Jan 20 2016
-
Table[(n + 1) (6 n^4 - 21 n^3 + 31 n^2 - 31 n + 30)/30, {n, 0, 30}]
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 1, 2, 18, 99, 355}, 40] (* Vincenzo Librandi, Jan 20 2016 *)
-
a(n)=(n+1)*(6*n^4-21*n^3+31*n^2-31*n+30)/30 \\ Charles R Greathouse IV, Jan 19 2016
-
Vec((1-5*x+11*x^2+x^3+16*x^4)/(x-1)^6 + O(x^100)) \\ Altug Alkan, Jan 19 2016
Showing 1-6 of 6 results.
Comments