cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246178 Expansion of 1/(1 - 3*x + x^2)^3.

Original entry on oeis.org

1, 9, 51, 234, 951, 3573, 12707, 43398, 143682, 464148, 1469778, 4578102, 14063653, 42695127, 128301453, 382144446, 1129360689, 3314619171, 9668400839, 28045947996, 80949547380, 232589050920, 665532883380, 1897176603420, 5389368930505, 15260830474869, 43085718922071, 121310066722194, 340684392838971, 954497114903169
Offset: 0

Views

Author

Emeric Deutsch, Aug 23 2014

Keywords

Comments

a(n) is the number of words of length n + 4 over the alphabet {0,1,2} which contain the subword 01 exactly twice. - Leidy Espitia, Sep 10 2020

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1 - 3*x + x^2)^3 )); // Wesley Ivan Hurt, Oct 02 2020
  • Maple
    S := series(1/(1-3*x+x^2)^3, x = 0, 30): seq(coeff(S, x, j), j = 0 .. 30);
  • Mathematica
    Table[(2 (25 + 39 n + 20 n^2) Fibonacci[2n+1] + (38 + 51 n + 25 n^2) Fibonacci[2n])/50, {n, 0, 24}] (* Emanuele Munarini, Mar 08 2018 *)
    CoefficientList[Series[1/(1-3x+x^2)^3,{x,0,50}],x] (* or *) LinearRecurrence[ {9,-30,45,-30,9,-1},{1,9,51,234,951,3573},50] (* Harvey P. Dale, Jan 16 2022 *)
  • Maxima
    makelist(((38+51*n+25*n^2)*fib(2*n)+2*(25+39*n+20*n^2)*fib(1+2*n))/50, n, 0, 30); /* Emanuele Munarini, Mar 08 2018 */
    
  • PARI
    my(x='x+O('x^30)); Vec(1/(1-3*x+x^2)^3) \\ Altug Alkan, Mar 08 2018
    

Formula

a(n) = (2*(25 + 39*n + 20*n^2)*F(2*n+1) + (38 + 51*n + 25*n^2)*F(2*n))/50, where F = A000045. - Emanuele Munarini, Mar 08 2018
a(n) = Sum_{t=0..n} Sum_{i=0..n-t} f(i)*f(t)*f(n-i-t), where f(n) = Fibonacci(2*n+2) = A001906(n+1). - Leidy Espitia, Sep 10 2020
a(n) = 9*a(n-1) - 30*a(n-2) + 45*a(n-3) - 30*a(n-4) + 9*a(n-5) - a(n-6). - Wesley Ivan Hurt, Sep 30 2020