cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A246562 Primes p such that 4+p, 4+p^2, 4+p^3, 4+p^5, and 4+p^7 are all prime.

Original entry on oeis.org

7, 469363, 2552713, 3378103, 6595597, 6629683, 39837517, 46024063, 46167307, 97371007, 97629403, 105528217, 136983307, 169483033, 202953613, 213792193, 216520987, 216738043, 221705647, 304033927, 317502193, 359133553
Offset: 1

Views

Author

Zak Seidov, Aug 29 2014

Keywords

Comments

All terms are == {3, 7} mod 10. Subsequence of A246519.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[193*10^5]],AllTrue[#^{1,2,3,5,7}+4,PrimeQ]&] (* Harvey P. Dale, Sep 07 2024 *)
  • PARI
    forprime(p=1,10^9,if(ispseudoprime(4+p) && ispseudoprime(4+p^2) && ispseudoprime(4+p^3) && ispseudoprime(4+p^5) && ispseudoprime(4+p^7), print1(p,", "))) \\ Derek Orr, Aug 30 2014

A253937 Primes p such that 4+p^7, 4+p^9 and 4+p^11 are also prime.

Original entry on oeis.org

82609, 1032607, 1859479, 2158447, 4952173, 5009593, 5828353, 6779833, 11316859, 11370727, 12786157, 13872853, 14117053, 15082783, 15645697, 15935989, 16715623, 20102569, 21310603, 22106569, 22164253, 23674597, 26012953, 26325613, 29592919, 30086347, 30306637
Offset: 1

Views

Author

K. D. Bajpai, Jan 19 2015

Keywords

Examples

			a(1) = 82609:
4 + 82609^7 = 26253762656881427836948640304009173;
4 + 82609^9 = 179162157925737357103123335151825463343651893;
4 + 82609^11 = 1222646797417942588836172615268162579679296234658008213;
all four are prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1, 2000000]], PrimeQ[4 + #^7] && PrimeQ[4 + #^9] && PrimeQ[4 + #^11] &]
  • PARI
    forprime(p=1, 1e7, if(isprime(4+p^7) && isprime(4+p^9) && isprime(4+p^11), print1(p,", ")))

A243095 Least integer m > 1 such that 4 + m^n is prime or 1 if only 4 + 1^n is prime.

Original entry on oeis.org

3, 3, 3, 1, 7, 3, 7, 1, 3, 3, 9, 1, 33, 7, 9, 1, 43, 17, 27, 1, 9, 3, 7, 1, 55, 47, 285, 1, 27, 3, 39, 1, 43, 117, 163, 1, 63, 255, 15, 1, 87, 3, 43, 1, 187, 77, 37, 1, 105, 45, 25, 1, 99, 305, 79, 1, 3, 27, 903, 1, 127, 293, 255, 1, 27, 27, 435, 1, 207, 143, 127, 1, 117, 295, 1159, 1, 477
Offset: 1

Views

Author

Zak Seidov, Aug 29 2014

Keywords

Comments

If n is a multiple of 4 then 4 + m^n is prime iff m = 1.
4 + m^(4*x) = (m^(2*x)-2*m^x+2) * (m^(2*x)+2*m^x+2). - Jens Kruse Andersen, Sep 02 2014

Crossrefs

Programs

  • PARI
    a(n)=if(n%4==0,return(1));m=2;while(!ispseudoprime(4+m^n),m++);return(m)
    vector(100,n,a(n)) \\ Derek Orr, Aug 29 2014
Showing 1-3 of 3 results.