A246551 Prime powers p^e where p is a prime and e is odd.
2, 3, 5, 7, 8, 11, 13, 17, 19, 23, 27, 29, 31, 32, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313
Offset: 1
Keywords
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[n:n in [2..1000]| #PrimeDivisors(n) eq 1 and IsSquare(n-EulerPhi(n))]; // Marius A. Burtea, May 15 2019
-
Mathematica
Take[Union[Flatten[Table[Prime[n]^(k + 1), {n, 100}, {k, 0, 14, 2}]]], 100] (* Vincenzo Librandi, Jan 10 2019 *)
-
PARI
for(n=1, 10^4, my(e=isprimepower(n)); if(e%2==1, print1(n, ", ")))
-
Python
from sympy import primepi, integer_nthroot def A246551(n): def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x,k)[0])for k in range(1,x.bit_length(),2))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 13 2024
Comments