cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A168467 a(n) = Product_{k=0..n} ((2*k+2)*(2*k+3))^(n-k).

Original entry on oeis.org

1, 6, 720, 3628800, 1316818944000, 52563198423859200000, 327312129899898454671360000000, 428017682605583614976547335700480000000000, 152240508705590071980086429193304853792686080000000000000
Offset: 0

Views

Author

Paul Barry, Nov 26 2009

Keywords

Comments

Hankel transform of A000698(n+1).
The sequence 1,1,6,720,... with general term Product_{k=0..n, ((2k+1)(2k+0^k))^(n-k)} is the Hankel transform of A112934. - Paul Barry, Dec 04 2009
a(n) is also the determinant of the n X n matrix M(i,j) = i^(2*j)*sinh(2*j*arccsch(i))/(2*sqrt(i^2+1)), with i and j from 1 to n, which is the same matrix generated by sequences of length n by the linear recurrences with kernel { 2*(k^2 + z), -k^4 }, and initial conditions { 1, 2*(k^2 + z) }, with k from 1 to n, and z = 2. Regardless of the value of z, for every n, the determinant of the n X n matrix of polynomials generated gives always a(n) as result. - Federico Provvedi, Feb 01 2021

Examples

			From _Federico Provvedi_, Apr 01 2021: (Start)
From both formulas in the comment above and in particular with z=2 from the linear recurrences, the determinant of the 5 X 5 matrix: ( (1,6,35,204,1189), (1,12,128,1344,14080),(1,22,403,7084,123205), (1,36,1040,28224,749824), (1,54,2291,89964,3426181) ) = 1316818944000 = a(5).
For a generic z, the determinant doesn't change as shown in this example, where the determinant of the 3 X 3 square matrix:
( ( 1, 2*(z+1), (2*z + 1)*(2*z+3)  ),
  ( 1, 2*(z+4), 4*(z+6)*(z+2)      ),
  ( 1, 2*(z+9), (2*z + 9)(2*z + 27)) ) = 720 = a(3). (End)
		

Crossrefs

Programs

  • Mathematica
    Table[2^(n^2 + 2*n + 23/24) Glaisher^(3/2) Pi^(-n/2 - 3/4) BarnesG[n + 2] BarnesG[n + 5/2]/E^(1/8), {n, 0, 10}] (* Vladimir Reshetnikov, Sep 06 2016 *)
    Table[Product[((2k+2)(2k+3))^(n-k),{k,0,n}],{n,0,10}] (* Harvey P. Dale, Dec 26 2019 *)
    Table[Det@Table[LinearRecurrence[{2*k^2,-k^4},{1, 2*k^2},n], {k, 1, n}], {n,1,20}] (* Federico Provvedi, Feb 01 2021 *)
    Det@Expand@Array[(#1^(2 #2))/(4 Sqrt[1 + #1^2])((Sqrt[1+1/#1^2]+1/#1)^(2 #2)-(Sqrt[1+1/#1^2]-1/#1)^(2 #2))&,{#,#}]&/@Range[20] (* Federico Provvedi, Apr 01 2021 *)
  • Python
    from math import prod
    def A168467(n): return prod(((m:=k+1<<1)*(m+1))**(n-k) for k in range(1,n+1))*3**n<Chai Wah Wu, Nov 26 2023

Formula

G.f.: Q(0)/(2*x) -1/x, where Q(k) = 1 + 1/(1 -(2*k+1)!*x/((2*k+1)!*x + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 17 2013
a(n) = Product_{k=1..n} (2*k+1)!. - Vladimir Reshetnikov, Sep 06 2016
a(n) ~ A^(-1/2) * 2^(n^2 + 3*n + 53/24) * exp((-3/2)*n^2 + (-5/2)*n + 1/24) * n^(n^2 + (5/2)*n + 35/24) * Pi^((n+1)/2), where A = A074962 is the Glaisher-Kinkelin constant. - Vladimir Reshetnikov, Sep 06 2016
a(n) = A000178(2*n + 1) / A098694(n). - Vaclav Kotesovec, Oct 28 2017
a(n) = A202768(n)*A000142(n). - Federico Provvedi, Feb 01 2021
For n > 0, a(n) = n * (2*n+1) * sqrt(BarnesG(2*n)) * Gamma(2*n)^2 / (sqrt(Gamma(n)) * 2^((n-3)/2)). - Vaclav Kotesovec, Nov 27 2024

A247512 The curvature (rounded down) of touching circles inscribed in a special way in the smaller segment of circle of radius 10/9 divided by a chord of length 4/3.

Original entry on oeis.org

9, 10, 13, 20, 35, 64, 119, 224, 428, 821, 1576, 3030, 5828, 11215, 21584, 41545, 79968, 153931, 296306, 570371, 1097933, 2113463, 4068308, 7831289, 15074840, 29018319, 55858826, 107525476, 206981225, 398428629, 766955420, 1476351286, 2841903278, 5470523390
Offset: 0

Views

Author

Kival Ngaokrajang, Sep 18 2014

Keywords

Comments

Refer to comment of A240926. This is the companion of A247335. After the first two terms, the curvatures seem to be non-integer.
The actual rational curvatures can be computed. See part II of the W. Lang link for the proofs of the statements given in the formula section.

Examples

			The first curvatures r(n) are 9, 10, 121/9, 1690/81, 25921/729, 420250/6561, 7027801/59049, 119508490/531441,... - _Wolfdieter Lang_, Sep 30 2014
		

Crossrefs

Programs

  • Mathematica
    r[0] := 9; r[n_] := r[n] = (11*r[n - 1] - 9 + 20*Sqrt[(r[n - 1] - 9)*r[n - 1]/10])/9; Table[Floor[r[n]], {n, 0, 30}] (* G. C. Greubel, Dec 20 2017 *)
  • PARI
    {
    r=0.1;print1(floor(9/(10*r)),", ");r1=r;
    for (n=1,50,
    if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
    ac=sqrt(ab^2-r^2);
    if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
    b=acos(r/ab)-z;
    r=r*(1-cos(b))/(1+cos(b));
    print1(floor(9/(10*r)),", ")
    )
    }

Formula

From Wolfdieter Lang, Sep 30 2014 (Start)
a(n) = floor(r(n)) with the rational curvatures r(n) satisfying the one step nonlinear recurrence relation r(n) = (11*r(n-1) - 9 + 20*sqrt((r(n-1) - 9)*r(n-1)/10))/9 with input r(0) = 9. (In the link r(n) is called b'(n).)
r(n) = A246643(n)/9^(n-1) = (9/2)*(1 + S(n, 22/9) - (11/9)*S(n-1, 22/9)), n >= 0, with Chebyshev/s S-polynomials (see A049310). 9^n*S(n, 22/9) = A246645(n). See A246643 for more details. (End)

Extensions

Edited: Keyword easy and Chebyshev index link added. Wolfdieter Lang, Sep 30 2014

A246643 A sequence used in the touching circle problem described in A247512.

Original entry on oeis.org

1, 10, 121, 1690, 25921, 420250, 7027801, 119508490, 2050368961, 35341836010, 610665665401, 10564982353210, 182902930753921, 3167536046903290, 54865571909148121, 950426408617182250, 16464857882672822401, 285238628280432626890, 4941562979309619843961
Offset: 0

Views

Author

Wolfdieter Lang, Sep 30 2014

Keywords

Comments

This sequence appears in the touching circle problem considered in A247512. There the rational curvatures are b'(n) = a(n)/9^(n-1), and A247512(n) = floor(b'(n)).
See the W. Lang link, part II) with the details where B'(n) plays the role of a(n).

Crossrefs

Programs

  • Magma
    I:=[1, 10, 121]; [n le 3 select I[n] else 31*Self(n-1) - 279*Self(n-2) + 729*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
  • Mathematica
    CoefficientList[Series[(1 - 21*x + 90*x^2)/((1 - 9*x)*(1 - 22*x + 81*x^2)), {x, 0, 50}], x] (* or *) LinearRecurrence[{31,-279,729}, {1, 10, 121}, 50] (* G. C. Greubel, Dec 20 2017 *)
  • PARI
    Vec(-(6*x-1)*(15*x-1)/((9*x-1)*(81*x^2-22*x+1)) + O(x^100)) \\ Colin Barker, Sep 30 2014
    

Formula

One step recurrence: a(n) = 11*a(n-1) - 9^(n-1) + 20*sqrt((a(n-1) - 9^(n-1))*a(n-1)/10), a(0) = 1, n >= 1.
a(n) = (9^n)*(1 + S(n, 22/9) - (11/9)*S(n-1, 22/9))/2, with Chebyshev's S-polynomials (see A049310). For 9^n*S(n, 22/9) see A246645(n). The positive integer sequence sqrt((a(n) - 9^n)*a(n)/10) = A246645(n-1).
O.g.f.: (1 - 21*x + 90*x^2)/((1 - 9*x)*(1 - 22*x + 81*x^2)) = (1/2)*((1 -11*x)/(1 - 22*x + 81*x^2 ) - 1/(1 - 9*x)).
For the proofs see the W. Lang link with a(n) = B'(n).
a(n) = 31*a(n-1)-279*a(n-2)+729*a(n-3). - Colin Barker, Sep 30 2014

A282854 34-gonal numbers: a(n) = n*(32*n-30)/2.

Original entry on oeis.org

0, 1, 34, 99, 196, 325, 486, 679, 904, 1161, 1450, 1771, 2124, 2509, 2926, 3375, 3856, 4369, 4914, 5491, 6100, 6741, 7414, 8119, 8856, 9625, 10426, 11259, 12124, 13021, 13950, 14911, 15904, 16929, 17986, 19075, 20196, 21349, 22534, 23751
Offset: 0

Views

Author

Daniel Mohebiravesh, Feb 23 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n(32n-30)/2, {n,50}]
    PolygonalNumber[34,Range[0,40]] (* or *) LinearRecurrence[{3,-3,1},{0,1,34},40] (* The first program requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 26 2018 *)
  • PARI
    a(n)=n*(16*n-15) \\ Charles R Greathouse IV, Feb 27 2017

Formula

From Nikolaos Pantelidis, Feb 09 2023 : (Start)
G.f.: x*(1 + 31*x)/(1 - x)^3.
E.g.f.: exp(x)*(x + 16*x^2). (End)
Showing 1-4 of 4 results.