cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246694 Triangle read by rows: T(n,k) = T(n,k-2) + 1 if n > 1 and 2 <= k <= n; T(0,0) = 1, T(1,0) = 1, T(1,1) = 2; if n > 1 is odd, then T(n,0) = T(n-1,n-2) + 1 and T(n,1) = T(n-1,n-1) + 1; if n > 1 is even, then T(n,0) = T(n-1,n-1) + 1 and T(n,1) = T(n-1,n-2) + 1.

Original entry on oeis.org

1, 1, 2, 3, 2, 4, 3, 5, 4, 6, 7, 5, 8, 6, 9, 7, 10, 8, 11, 9, 12, 13, 10, 14, 11, 15, 12, 16, 13, 17, 14, 18, 15, 19, 16, 20, 21, 17, 22, 18, 23, 19, 24, 20, 25, 21, 26, 22, 27, 23, 28, 24, 29, 25, 30, 31, 26, 32, 27, 33, 28, 34, 29, 35, 30, 36, 31, 37, 32
Offset: 0

Views

Author

Clark Kimberling, Sep 01 2014

Keywords

Comments

As an array, for each m, row 2*m has m odd numbers and m+1 even numbers; row 2*m-1 has m odds and m evens. As a sequence, every positive integer n occurs exactly twice, separated by floor((n+1)/2) other numbers.

Examples

			First 8 rows:
  1
  1 ... 2
  3 ... 2 ... 4
  3 ... 5 ... 4 ... 6
  7 ... 5 ... 8 ... 6 ... 9
  7 .. 10 ... 8 .. 11 ... 9 .. 12
 13 .. 10 .. 14 .. 11 .. 15 .. 12 .. 16
 13 .. 17 .. 14 .. 18 .. 15 .. 19 .. 16 .. 20
		

Crossrefs

Cf. A246695 (row sums), A174114 (central terms).
Cf. A002620 (main diagonal and first subdiagonal), A377802.

Programs

  • Haskell
    a246694 n k = a246694_tabl !! n !! k
    a246694_row n = a246694_tabl !! n
    a246694_tabl = [1] : [1,2] : f 1 2 [1,2] where
       f i z xs = ys : f j (z + 1) ys where
         ys = take (z + 1) $ map (+ 1) (xs !! (z - i) : xs !! (z - j) : ys)
         j = 3 - i
    -- Reinhard Zumkeller, Sep 03 2014
  • Mathematica
    z = 25; t[0, 0] = 1; t[1, 0] = 1; t[1, 1] = 2;
    t[n_, 0] := If[OddQ[n], t[n - 1, n - 2] + 1, t[n - 1, n - 1] + 1];
    t[n_, 1] := If[OddQ[n], t[n - 1, n - 1] + 1, t[n - 1, n - 2] + 1];
    t[n_, k_] := t[n, k - 2] + 1; Flatten[Table[t[n, k], {n, 0, z}, {k, 0, n}]](*A246694*)

Formula

T(n, k) = 1 + floor(n/2) * (1+(-1)^k) / 2 + (floor(n/2))^2 + (2*k - 1 + (-1)^k) / 4 + (1-(-1)^n) * (1-(-1)^k) * n / 4. - Werner Schulte, Nov 16 2024
From Stefano Spezia, Nov 17 2024: (Start)
T(n, k) = (6 + (-1)^k + (-1)^(k+n) + 4*k + 2*n*(1 + (-1)^(k+n) + n))/8.
G.f.: (1 - x^3*y + x^7*y^3 + x^4*(1 - 2*y^2) - x^5*y*(1 - y^2))/((1 - x)^3*(1 + x)^2*(1 - x*y)^3*(1 + x*y)). (End)

Extensions

Edited by M. F. Hasler, Nov 17 2014