A246695 Row sums of the triangular array A246694.
1, 3, 9, 18, 35, 57, 91, 132, 189, 255, 341, 438, 559, 693, 855, 1032, 1241, 1467, 1729, 2010, 2331, 2673, 3059, 3468, 3925, 4407, 4941, 5502, 6119, 6765, 7471, 8208, 9009, 9843, 10745, 11682, 12691, 13737, 14859, 16020, 17261, 18543, 19909, 21318, 22815
Offset: 0
Examples
First 5 rows of A246694 preceded by sums sum = 1: ...... 1 sum = 3: ...... 1 ... 2 sum = 9: ...... 3 ... 2 ... 4 sum = 18: ..... 3 ... 5 ... 4 ... 6 sum = 35: ..... 7 ... 5 ... 8 ... 6 ... 9
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
a246695 n = a246695_list !! n a246695_list = scanl1 (+) a257083_list -- Reinhard Zumkeller, Apr 17 2015
-
Mathematica
z = 25; t[0, 0] = 1; t[1, 0] = 1; t[1, 1] = 2; t[n_, 0] := If[OddQ[n], t[n - 1, n - 2] + 1, t[n - 1, n - 1] + 1]; t[n_, 1] := If[OddQ[n], t[n - 1, n - 1] + 1, t[n - 1, n - 2] + 1]; t[n_, k_] := t[n, k - 2] + 1; A246695 = Table[Sum[t[n, k], {k, 0, n}], {n, 0, z}]
Formula
Conjectured linear recurrence: a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6), with a(0) = 1, a(1) = 3, a(2) = 9, a(3) = 18, a(4) = 35, a(5) = 57, a(6) = 91.
Conjectured g.f.: (1 + x + 2*x^2 + x^3 + x^4)/((x - 1)^4*(x + 1)^2).
Conjecture: a(n) = (1/8)*(n + 1)*((-1)^n + 2*n^2 + 4*n + 7). - Eric Simon Jacob, Jul 19 2023 [This conjecture is correct; compare A377802, note offset 1. - Werner Schulte, Nov 22 2024]
Extensions
Corrected and edited by M. F. Hasler, Nov 17 2014
Comments