cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A246694 Triangle read by rows: T(n,k) = T(n,k-2) + 1 if n > 1 and 2 <= k <= n; T(0,0) = 1, T(1,0) = 1, T(1,1) = 2; if n > 1 is odd, then T(n,0) = T(n-1,n-2) + 1 and T(n,1) = T(n-1,n-1) + 1; if n > 1 is even, then T(n,0) = T(n-1,n-1) + 1 and T(n,1) = T(n-1,n-2) + 1.

Original entry on oeis.org

1, 1, 2, 3, 2, 4, 3, 5, 4, 6, 7, 5, 8, 6, 9, 7, 10, 8, 11, 9, 12, 13, 10, 14, 11, 15, 12, 16, 13, 17, 14, 18, 15, 19, 16, 20, 21, 17, 22, 18, 23, 19, 24, 20, 25, 21, 26, 22, 27, 23, 28, 24, 29, 25, 30, 31, 26, 32, 27, 33, 28, 34, 29, 35, 30, 36, 31, 37, 32
Offset: 0

Views

Author

Clark Kimberling, Sep 01 2014

Keywords

Comments

As an array, for each m, row 2*m has m odd numbers and m+1 even numbers; row 2*m-1 has m odds and m evens. As a sequence, every positive integer n occurs exactly twice, separated by floor((n+1)/2) other numbers.

Examples

			First 8 rows:
  1
  1 ... 2
  3 ... 2 ... 4
  3 ... 5 ... 4 ... 6
  7 ... 5 ... 8 ... 6 ... 9
  7 .. 10 ... 8 .. 11 ... 9 .. 12
 13 .. 10 .. 14 .. 11 .. 15 .. 12 .. 16
 13 .. 17 .. 14 .. 18 .. 15 .. 19 .. 16 .. 20
		

Crossrefs

Cf. A246695 (row sums), A174114 (central terms).
Cf. A002620 (main diagonal and first subdiagonal), A377802.

Programs

  • Haskell
    a246694 n k = a246694_tabl !! n !! k
    a246694_row n = a246694_tabl !! n
    a246694_tabl = [1] : [1,2] : f 1 2 [1,2] where
       f i z xs = ys : f j (z + 1) ys where
         ys = take (z + 1) $ map (+ 1) (xs !! (z - i) : xs !! (z - j) : ys)
         j = 3 - i
    -- Reinhard Zumkeller, Sep 03 2014
  • Mathematica
    z = 25; t[0, 0] = 1; t[1, 0] = 1; t[1, 1] = 2;
    t[n_, 0] := If[OddQ[n], t[n - 1, n - 2] + 1, t[n - 1, n - 1] + 1];
    t[n_, 1] := If[OddQ[n], t[n - 1, n - 1] + 1, t[n - 1, n - 2] + 1];
    t[n_, k_] := t[n, k - 2] + 1; Flatten[Table[t[n, k], {n, 0, z}, {k, 0, n}]](*A246694*)

Formula

T(n, k) = 1 + floor(n/2) * (1+(-1)^k) / 2 + (floor(n/2))^2 + (2*k - 1 + (-1)^k) / 4 + (1-(-1)^n) * (1-(-1)^k) * n / 4. - Werner Schulte, Nov 16 2024
From Stefano Spezia, Nov 17 2024: (Start)
T(n, k) = (6 + (-1)^k + (-1)^(k+n) + 4*k + 2*n*(1 + (-1)^(k+n) + n))/8.
G.f.: (1 - x^3*y + x^7*y^3 + x^4*(1 - 2*y^2) - x^5*y*(1 - y^2))/((1 - x)^3*(1 + x)^2*(1 - x*y)^3*(1 + x*y)). (End)

Extensions

Edited by M. F. Hasler, Nov 17 2014

A246695 Row sums of the triangular array A246694.

Original entry on oeis.org

1, 3, 9, 18, 35, 57, 91, 132, 189, 255, 341, 438, 559, 693, 855, 1032, 1241, 1467, 1729, 2010, 2331, 2673, 3059, 3468, 3925, 4407, 4941, 5502, 6119, 6765, 7471, 8208, 9009, 9843, 10745, 11682, 12691, 13737, 14859, 16020, 17261, 18543, 19909, 21318, 22815
Offset: 0

Views

Author

Clark Kimberling, Sep 01 2014

Keywords

Comments

Also partial sums of A257083. - Reinhard Zumkeller, Apr 17 2015

Examples

			First 5 rows of A246694 preceded by sums
sum = 1: ...... 1
sum = 3: ...... 1 ... 2
sum = 9: ...... 3 ... 2 ... 4
sum = 18: ..... 3 ... 5 ... 4 ... 6
sum = 35: ..... 7 ... 5 ... 8 ... 6 ... 9
		

Crossrefs

Programs

  • Haskell
    a246695 n = a246695_list !! n
    a246695_list = scanl1 (+) a257083_list
    -- Reinhard Zumkeller, Apr 17 2015
  • Mathematica
    z = 25; t[0, 0] = 1; t[1, 0] = 1; t[1, 1] = 2;
    t[n_, 0] := If[OddQ[n], t[n - 1, n - 2] + 1, t[n - 1, n - 1] + 1];
    t[n_, 1] := If[OddQ[n], t[n - 1, n - 1] + 1, t[n - 1, n - 2] + 1];
    t[n_, k_] := t[n, k - 2] + 1; A246695 = Table[Sum[t[n, k], {k, 0, n}], {n, 0, z}]

Formula

Conjectured linear recurrence: a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6), with a(0) = 1, a(1) = 3, a(2) = 9, a(3) = 18, a(4) = 35, a(5) = 57, a(6) = 91.
Conjectured g.f.: (1 + x + 2*x^2 + x^3 + x^4)/((x - 1)^4*(x + 1)^2).
Conjecture: a(n) = (1/8)*(n + 1)*((-1)^n + 2*n^2 + 4*n + 7). - Eric Simon Jacob, Jul 19 2023 [This conjecture is correct; compare A377802, note offset 1. - Werner Schulte, Nov 22 2024]

Extensions

Corrected and edited by M. F. Hasler, Nov 17 2014
Showing 1-2 of 2 results.