cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A246702 The number of positive k < (2n-1)^2 such that (2^k - 1)/(2n - 1)^2 is an integer.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 10, 2, 1, 1, 1, 6, 3, 2, 1, 9, 2, 3, 3, 2, 2, 6, 1, 13, 9, 1, 1, 10, 5, 1, 3, 2, 8, 3, 2, 2, 1, 1, 10, 3, 8, 7, 9, 2, 2, 3, 1, 2, 26, 1, 3, 9, 4, 2, 9, 4, 1, 6, 1, 18, 9, 1, 7, 3, 2, 1, 3, 2, 5, 10, 1, 10, 6, 38, 3, 3, 4, 1, 41, 2
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 15 2014

Keywords

Comments

a(n) is the number of integers k in range 1 .. A016754(n-1)-1 such that A000225(k) is an integral multiple of A016754(n-1). - Antti Karttunen, Nov 15 2014
Conjecture: the positions of 1's, a(k)=1, are exactly given by the 2k-1 which are elements of A167791. - Antti Karttunen, Nov 15 2014
From Charlie Neder, Oct 18 2018: (Start)
It would appear that, if 2k-1 is in A167791, then so is (2k-1)^2, and so a(k) = 1 would follow by definition.
Conjecture: Let B be the first value such that (2k-1)^2 divides 2^B - 1. Then either 2k-1 divides B, or 2k-1 is a Wieferich prime (A001220). (End)

Examples

			a(2) = 1 because (2^6 - 1)/(2*2 - 1)^2 = 7 is an integer and 6 < 9.
a(3) = 1 because (2^20 - 1)/(2*3 - 1)^2 = 41943 is an integer and 20 < 25.
a(3) = 2 because (2^21 - 1)/(2*4 - 1)^2 = 42799 is an integer and 21 < 49; and also (2^42 - 1)/(2*4 - 1)^2 = 89756051247 is an integer and 42 < 49.
		

Crossrefs

A246703 gives the positions of records.

Programs

  • Maple
    A246702 := proc(n)
        local a,klim,k ;
        a := 0 ;
        klim := (2*n-1)^2 ;
        for k from 1 to klim-1 do
            if modp(2^k-1,klim) = 0 then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc:
    seq(A246702(n),n=1..80) ; # R. J. Mathar, Nov 15 2014
  • Mathematica
    A246702[n_] := Module[{a, klim, k}, a = 0; klim = (2*n-1)^2; For[k = 1, k <= klim-1, k++, If[Mod[2^k-1, klim] == 0, a = a+1]]; a];
    Table[A246702[n], {n, 1, 84}] (* Jean-François Alcover, Oct 04 2017, translated from R. J. Mathar's Maple code *)
  • PARI
    a(n)=my(t=(2*n-1)^2,m=Mod(1,t)); sum(k=1,t-1,m*=2;m==1) \\ Charles R Greathouse IV, Nov 16 2014
    
  • PARI
    a246702(n) = my(m=(2*n-1)^2); (m-1)\znorder(Mod(2,m)); \\ Max Alekseyev, Oct 11 2023
  • Scheme
    (define (A246702 n) (let ((u (A016754 (- n 1)))) (let loop ((k (- u 1)) (s 0)) (cond ((zero? k) s) ((zero? (modulo (A000225 k) u)) (loop (- k 1) (+ s 1))) (else (loop (- k 1) s)))))) ;; Antti Karttunen, Nov 15 2014
    

Formula

a(n) = floor( 4*n*(n-1) / A002326(2*n*(n-1)) ). - Max Alekseyev, Oct 11 2023

Extensions

Corrected by R. J. Mathar, Nov 15 2014
Showing 1-1 of 1 results.