cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A246717 Numbers of the form 2n - 1 such that A246702(n) = 2.

Original entry on oeis.org

7, 17, 23, 35, 41, 47, 49, 71, 77, 79, 95, 97, 103, 115, 137, 143, 167, 175, 191, 193, 199, 209, 235, 239, 245, 263, 271, 289, 295, 299, 311, 313, 319, 335, 343, 359, 367, 371, 383, 395, 401, 407, 409, 413, 415, 437, 449, 463, 475, 479, 487, 503, 515, 517, 521, 529, 535, 539, 551, 569, 575, 581, 583, 599, 607, 611, 647, 649, 667, 695, 707
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 15 2014

Keywords

Comments

From Antti Karttunen, Nov 15 2014: (Start)
Equally: Odd numbers n for which A246702((n+1)/2) = 2.
Primes in this sequence: 7, 17, 23, 41, 47, 71, 79, ... seem to be A115591.
A249819 gives the composite terms.
(End)

Crossrefs

Programs

  • PARI
    isA246717(n) = { if(!(n%2), return(0), my(u, s=0); u = n^2; for(k=1, u-1, if(!(((2^k)-1)%u), s++;if(s > 2, return(0)))); return(2==s)); }
    n = 0; i = 0; while(i < 105, n++; if(isA246717(n), i++; write("b246717.txt", i, " ", n))); \\ From Antti Karttunen, Nov 15 2014
    (Scheme, with Antti Karttunen's IntSeq-library)
    (define A246717 (MATCHING-POS 1 1 (lambda (n) (and (odd? n) (= 2 (A246702 (/ (+ 1 n) 2)))))))

Extensions

Terms corrected by Antti Karttunen, Nov 15 2014

A246703 Where records occur in A246702.

Original entry on oeis.org

1, 2, 4, 8, 11, 28, 53, 78, 83, 98, 103, 137, 233, 305, 308, 445, 452, 547, 1640, 2733, 3826, 7105, 11477, 21314, 49732, 149195, 745973, 1026968, 2536307, 3765548, 4326641, 5756285, 6415364, 7188773, 7907309, 8205698, 9593808, 13431331, 17268854, 24943900, 28781423, 40293992, 67156653, 74831699, 86344268, 120881975
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 15 2014

Keywords

Comments

RECORDS transform of A246702.

Crossrefs

Cf, A246702.

Extensions

Corrected by R. J. Mathar, Nov 15 2014
Terms a(13) onward from Max Alekseyev, Oct 11 2023

A246755 Numbers of the form 2k - 1 such that A246702(k) = 3.

Original entry on oeis.org

15, 33, 43, 45, 69, 75, 87, 99, 109, 135, 141, 157, 159, 177, 207, 213, 225, 229, 249, 261, 277, 283, 297, 303, 307, 321, 363, 375, 393, 405, 423, 447, 477, 499, 501, 519, 531, 537, 573, 591, 621, 639, 643, 675, 681, 691, 717, 733, 739, 747, 783, 789, 807, 811
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 15 2014

Keywords

Comments

Composites in this sequence: 15, 33, 45, 69, 75, 87, 99, 135, 141, 159, 177, 207, 213, 225, 249, 261, 297, 303, 321, 363, 375, 393, 405, 423, 447, 477, ...

Examples

			A246702(8) = 3 for the first time, hence a(1) = 2*8 - 1 = 15.
		

Crossrefs

Cf. Numbers of the form 2k - 1 such that A246702(k) = m: number 1 (m = 0), A167791 (m = 1), A246717 (m = 2), this sequence (m = 3), A001133 (primes in this sequence).

Programs

  • PARI
    is(k) = (m=Mod(k%2, k*k)) && sum(i=1, k*k-1, m*=2; m==1) == 3; \\ Jinyuan Wang, May 15 2020

Extensions

More terms from and terms corrected by Jinyuan Wang, May 15 2020

A249819 Composite natural numbers n for which there are exactly two distinct 0 < k < n^2 such that 2^k - 1 is divisible by n^2.

Original entry on oeis.org

35, 49, 77, 95, 115, 143, 175, 209, 235, 245, 289, 295, 299, 319, 335, 343, 371, 395, 407, 413, 415, 437, 475, 515, 517, 529, 535, 539, 551, 575, 581, 583, 611, 649, 667, 695, 707, 749, 767, 815, 835, 847, 851, 869, 875, 893, 895, 913, 917, 923, 995, 1007
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2014

Keywords

Comments

Equally: odd composite numbers n for which A246702((n+1)/2) = 2.

Examples

			35 = 5*7 is an odd composite. Only cases where 2^k - 1 (with k in range 1 .. 35^2 - 1 = 1 .. 1224) is a multiple of 35 are k = 420 and k = 840, thus 35 is included in this sequence.
		

Crossrefs

Composite terms in A246717.
Seems also to be a subsequence of A038509.
Cf. A246702.

Programs

  • Maple
    isA249819 := proc(n)
        if isprime(n) or n=1 then
            false;
        else
            ct := 0 ;
            for k from 1 to n^2-1 do
                if modp(2 &^ k-1,n^2) = 0 then
                    ct := ct+1 ;
                end if;
                if ct > 2 then
                    return false;
                end if;
            end do:
            return is(ct=2) ;
        end if;
    end proc:
    for n from 1 to 1100 do
        if isA249819(n) then
            printf("%d,\n",n) ;
        end if;
    end do: # R. J. Mathar, Nov 16 2014

A246719 Smallest natural number m for which there are exactly n distinct values k such that 0 < k < m^2 and 2^k - 1 is divisible by m^2.

Original entry on oeis.org

1, 3, 7, 15, 113, 65, 31, 91, 73, 39, 21, 331, 267, 55, 217, 435, 203, 697, 127, 703, 565, 429, 451, 231, 595, 253, 105, 327, 171, 1045, 1335, 255, 385, 497, 341, 1295, 219, 455, 155, 1417, 969, 165, 2143, 861, 357, 453, 555, 2821, 195, 1477, 301, 205, 2091
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Nov 15 2014

Keywords

Comments

Smallest odd number of the form 2q - 1 such that A246702(q) = n.
Additional terms include: a(426) = 1705, a(451) = 903, a(516) = 2067, a(536) = 2145, a(563) = 2255, a(566) = 2265, a(593) = 2373, a(761) = 3045, a(770) = 3081, a(786) = 2359, a(1333) = 2667, and a(3282) = 1093. - Kevin P. Thompson, Nov 26 2021

Examples

			The first occurrence of 3 in the sequence A246702 occurs at n = 8. Therefore, a(3) = 2n - 1 = 2*8 - 1 = 15.
		

Crossrefs

Cf. Numbers of the form 2n - 1 such that A246702(n) = i: number 1 (i = 0), A167791 (i = 1), A246717 (i = 2), A246755 (i = 3).

Programs

  • Mathematica
    NumK[m_]:=NumK[m]=(m2=m^2;nk=0;Do[If[Mod[2^i,m2]==1,nk++],{i,m2-1}];nk)
    nterms=10;Table[m=0;While[NumK[++m]!=n];m,{n,0,nterms-1}] (* Paolo Xausa, Nov 30 2021 *)
  • PARI
    isok(m, n) = {my(v = vector(m^2-1, k, Mod(2, m^2)^k == 1)); vecsum(v) == n;}
    a(n) = {my(m=1); while (!isok(m, n), m++); m;} \\ Michel Marcus, Nov 27 2021

Extensions

Name corrected by Antti Karttunen, Nov 18 2014
Multiple corrections and new terms a(17)-a(52) from Kevin P. Thompson, Nov 26 2021
Showing 1-5 of 5 results.