cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246782 Numbers k such that A182134(k)=2, i.e., there exist only two primes p with prime(k) < p < prime(k)^(1+1/k).

Original entry on oeis.org

5, 6, 7, 9, 10, 11, 14, 15, 22, 23, 28, 29, 30, 45, 46, 61, 66, 216, 217, 367, 3793, 1319945, 1576499, 8040877, 17567976, 44405858, 445538764, 1478061204, 3643075047, 17440041685, 190836014732, 714573709895, 714573709896
Offset: 1

Views

Author

Farideh Firoozbakht, Oct 12 2014

Keywords

Comments

Firoozbakht's conjecture says that for every n, there exists at least one prime p such that prime(n) < p < prime(n)^(1+1/n).
Let A(m) = {n | A182134(n) = m} where A182134(n) = #{p | p is prime and prime(n) < p < prime(n)^(1+1/n)}. This sequence gives the terms of A(2) and the sequence A246781 gives the terms of A(3).
The only known indices n for which A182134(n) = 1 are {1, 2, 3, 4, 8}. It is conjectured that this is the complete set A(1).
Conjecture: For all m, where m is greater than one, A(m) is an infinite set.
a1 = 49749629143524, a2 = 1475067052906944 and a3 = 1475067052906945 are three large terms of the sequence. It is interesting that a3 - a2 = 1.
Conjecture: The sequence is infinite.
Next term is greater than 25000000.
a(34) > 10^12. - Robert Price, Nov 01 2014
The conjecture that A(1)={1, 2, 3, 4, 8} holds through 10^12. - Robert Price, Nov 01 2014

Examples

			5 is in the sequence since there exists only two primes p, prime(5) < p < prime(5)^(1+1/5). Note that prime(5) = 11, 11^(1+1/5) ~ 17.77 and 11 < 13 < 17 < 17.77.
		

Crossrefs

Programs

  • Haskell
    a246782 n = a246782_list !! (n-1)
    a246782_list = filter ((== 2) . a182134) [1..]
    -- Reinhard Zumkeller, Nov 17 2014
  • Mathematica
    np[n_]:=(a = Prime[n]; b = a^(1 + 1/n); Length[Select[Range[a+1,b], PrimeQ]]); Do[If[np[n] == 2,Print[n]], {n, 25000000}]
  • PARI
    for(n=1,oo,2==primepi(prime(n)^(1+1/n))-n&&print1(n", ")) \\ M. F. Hasler, Nov 03 2014
    

Extensions

a(26)-a(27) from Robert Price, Oct 24 2014
a(28)-a(33) from Robert Price, Nov 01 2014