cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A246784 Numbers n such that both n and n+1 are in the sequence A246782.

Original entry on oeis.org

5, 6, 9, 10, 14, 22, 28, 29, 45, 216, 714573709895
Offset: 1

Views

Author

Farideh Firoozbakht, Oct 23 2014

Keywords

Comments

Numbers n such that A182134(n) = A182134(n+1) = 2.
n = 1475067052906945 is a large term in this sequence.
a(12) > 10^12. - Robert Price, Nov 15 2014

Crossrefs

Extensions

a(11) from Robert Price, Nov 15 2014

A182134 Number of primes p such that prime(n) < p < prime(n)^(1 + 1/n).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 3, 3, 2, 2, 3, 4, 3, 4, 3, 3, 2, 2, 4, 5, 4, 3, 2, 2, 2, 3, 4, 4, 3, 4, 4, 4, 4, 3, 4, 5, 4, 4, 3, 2, 2, 4, 5, 5, 4, 4, 4, 3, 5, 6, 5, 5, 4, 3, 3, 2, 4, 4, 4, 3, 2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 5, 6, 5, 7, 6, 6, 5, 5, 5, 5, 4, 4, 5, 4, 5, 4, 3, 3, 3, 3, 5, 5, 5, 5, 6, 5
Offset: 1

Views

Author

Thomas Ordowski, Apr 20 2012

Keywords

Comments

Firoozbakht's conjecture: prime(n+1)^(1/(n+1)) < prime(n)^(1/n), for all n >= 1.
According to Firoozbakht's conjecture, all terms of this sequence are positive. - Jahangeer Kholdi, Jul 30 2014
Conjecture: a(n)=1 only for n = 1, 2, 3, 4, and 8. - Farideh Firoozbakht, Oct 18 2014
See A246782 and A246781 for indices such that a(n)=2 resp. a(n)=3. - M. F. Hasler, Oct 19 2014
Length of n-th row in A244365; a(n) = A001221(A245722(n)). - Reinhard Zumkeller, Nov 18 2014
a(n) = 2 for n = 5, 6, 7, 9, 10, 11, 14, 15, 22, 23, 28, 29, 30, 45, 46, 61, 66, 216, 217, 367, 3793, 1319945, ... = A246782. - Robert G. Wilson v, Feb 20 2015
a(n) = 3 for n = 12, 13, 16, 18, 20, 21, 27, 31, 34, 39, 44, 53, 59, 60, 65, 96, 97, 98, 99, 136, 154, 202, ... = A246781. - Robert G. Wilson v, Feb 20 2015
First occurrence of k: 1, 5, 12, 17, 25, 55, 83, 169, 207, 206, 384, 953, ... = A246810. - Robert G. Wilson v, Feb 20 2015
Conjecture: lim sup n->oo a(n) = oo. - John W. Nicholson, Feb 28 2015
a(n) is unbounded (that is, the above conjecture is true). In particular, there is a constant c > 1 such that a(n) > c log n infinitely often (by Maier's theorem). - Thomas Ordowski and Charles R Greathouse IV, Apr 09 2015

Examples

			a(25) = 5, because p(25) = 97 and there are 5 primes p such that 97 < p < 97^(1 + 1/25) = 121.9299290...: 101, 103, 107, 109, 113.
		

Crossrefs

Programs

  • Haskell
    a182134 = length . a244365_row  -- Reinhard Zumkeller, Nov 16 2014
    
  • Maple
    a:= n-> numtheory[pi](ceil(ithprime(n)^(1+1/n))-1)-n:
    seq(a(n), n=1..100);  # Alois P. Heinz, Apr 21 2012
  • Mathematica
    Table[i = Prime[n] + 1; j = Floor[Prime[n]^(1 + 1/n)]; Length[Select[Range[i, j], PrimeQ]], {n, 100}] (* T. D. Noe, Apr 21 2012 *)
    f[n_] := PrimePi[ Prime[n]^(1 + 1/n)] - n; Array[f, 105] (* Robert G. Wilson v, Feb 20 2015 *)
  • PARI
    A182134(n)=primepi(prime(n)^(1+1/n))-n \\ M. F. Hasler, Nov 03 2014
    
  • Python
    from sympy import primepi, prime
    def a(n): return primepi(prime(n)**(1 + 1/n)) - n # Indranil Ghosh, Apr 23 2017

Formula

a(n) = Sum_{m=A000040(n+1)..A249669(n)} A010051(m). - Reinhard Zumkeller, Nov 16 2014
a(n) = primepi(prime(n)^(1+1/n)) - n (see PARI program). - John W. Nicholson, Feb 11 2015

Extensions

More terms from Alois P. Heinz, Apr 21 2012

A245396 Largest prime not exceeding prime(n)^(1 + 1/n).

Original entry on oeis.org

3, 5, 7, 11, 17, 19, 23, 23, 31, 37, 41, 47, 53, 53, 59, 67, 73, 73, 83, 83, 89, 89, 97, 107, 113, 113, 113, 113, 127, 131, 139, 151, 157, 157, 167, 173, 179, 181, 181, 193, 199, 199, 211, 211, 211, 223, 233, 241, 251, 251, 257, 263, 263, 277, 283, 283, 293, 293, 293, 307, 307, 317, 331, 337
Offset: 1

Views

Author

M. F. Hasler, Nov 03 2014

Keywords

Comments

Firoozbakht's conjecture, prime(n+1) < prime(n)^(1 + 1/n), is equivalent to a(n) > prime(n). See also A182134.
Here prime(n) = A000040(n). The conjecture is also equivalent to a(n) - prime(n) >= A001223(n), the n-th gap between primes. See also A246778(n) = floor(prime(n)^(1 + 1/n)) - prime(n).
It is also conjectured that the equality a(n) - prime(n) = A001223(n) holds only for n in the set {1, 2, 3, 4, 8}, see A246782. a(n) is also largest prime less than prime(n)^(1 + 1/n), since prime(n)^(1 + 1/n) is never prime. - Farideh Firoozbakht, Nov 03 2014
a(n) = A007917(A249669(n)) = A244365(n,A182134(n)) = A006530(A245722(n)). - Reinhard Zumkeller, Nov 18 2014

Crossrefs

Programs

  • Haskell
    a245396 n = a244365 n (a182134 n)  -- Reinhard Zumkeller, Nov 16 2014
  • Maple
    seq(prevprime(ceil(ithprime(n)^(1+1/n))),n=1..100); # Robert Israel, Nov 03 2014
  • Mathematica
    Table[NextPrime[Prime[n]^(1 + 1/n), -1], {n, 64}] (* Farideh Firoozbakht, Nov 03 2014 *)
  • PARI
    a(n)=precprime(prime(n)^(1+1/n))
    
  • PARI
    a(n)=precprime(sqrtnint(prime(n)^(n+1),n)) \\ Charles R Greathouse IV, Oct 29 2018
    

Formula

A245396 = A007917 o A249669, i.e., a(n) = A007917(A249669(n)). Although one could say "less than" in the definition of this sequence, one cannot use A151799 in this formula because for n = 2 and n = 4, one has a(n) = A249669(n).

A246781 Numbers n such that A182134(n) = 3, i.e., there exist only three primes p with prime(n) < p < prime(n)^(1 + 1/n).

Original entry on oeis.org

12, 13, 16, 18, 20, 21, 27, 31, 34, 39, 44, 53, 59, 60, 65, 96, 97, 98, 99, 136, 154, 202, 214, 215, 220, 221, 280, 324, 325, 326, 365, 366, 736, 780, 2146, 2225, 3792, 5946, 5947, 5948, 6902, 6903, 18524, 22078, 23510, 23511, 23512, 31542, 31544, 33606
Offset: 1

Views

Author

Farideh Firoozbakht, Oct 12 2014

Keywords

Comments

Firoozbakht's conjecture states that for every n, there exists at least one prime p with prime(n) < p < prime(n)^(1+1/n).
The only known indices n for which A182134(n) = 1 are {1, 2, 3, 4, 8}.
See A246782 for indices n such that A182134(n) = 2.
This sequence lists numbers n such that A182134(n) = 3.

Examples

			12 is in the sequence since there exists only three primes p where, prime(12) < p < prime(12)^(1 + 1/12). Note that prime(12) = 37, 37^(1 + 1/12) ~ 49.99 and 37 < 41 < 43 < 47 < 49.99.
		

Crossrefs

Programs

  • Haskell
    a246781 n = a246781_list !! (n-1)
    a246781_list = filter ((== 3) . a182134) [1..]
    -- Reinhard Zumkeller, Nov 17 2014
  • Maple
    N:= 10^5: # to get all terms where prime(n)^(1+1/n) < N
    Primes:= select(isprime,[2,seq(2*i+1,i=1..floor((N+1)/2))]):
    filter:= proc(n) local t; t:= Primes[n]^(n+1); Primes[n+3]^n <= t and Primes[n+4]^n > t end proc:
    select(filter, [$1..nops(Primes)-4]); # Robert Israel, Mar 23 2015
  • Mathematica
    np[n_] := (a = Prime[n]; b = a^(1 + 1/n); Length[Select[Range[a + 1, b], PrimeQ]]); Select[Range[10000], np[#] == 3 &]

Extensions

a(43)-a(50) from Robert Price, Oct 24 2014

A246810 a(n) is the smallest number m such that np(m) = n, where np(m) is number of primes p such that prime(m) < p < prime(m)^(1 + 1/m).

Original entry on oeis.org

1, 5, 12, 17, 25, 55, 83, 169, 207, 206, 384, 953, 1615, 2192, 2197, 3024, 3023, 10709, 10935, 29509, 29508, 62736, 62735, 94333, 94332, 196966, 314940, 608777, 1258688, 1767259, 2448975, 2448973, 7939362, 9373136, 9373134, 16854966, 16854967
Offset: 1

Views

Author

Keywords

Comments

Firoozbakht's conjecture says that for every n, there exists at least one prime p where, prime(n) < p < prime(n)^(1 + 1/n). Hence if Firoozbakht's conjecture is true, then there is no m such that np(m) = 0.
Conjecture: For every positive integer n, a(n) exists.
a(65) > 10^12. - Robert Price, Nov 12 2014

Examples

			a(6) = 55 since the number of primes p such that prime(55) < p < prime(55)^(1 + 1/55) is 6 and 55 is the smallest number with this property.
		

Crossrefs

Programs

  • Mathematica
    np[n_]:=(b=Prime[n]; Length[Select[Range[b+1, b^(1 + 1/n)],PrimeQ]]); a[n_]:=(For[m=1, np[m] !=n, m++]; m);
    Do[Print[a[n]], {n, 37}]

A249566 Numbers n such that A182134(n) = 4, i.e., there exist exactly four primes p with prime(n) < p < prime(n)^(1+1/n).

Original entry on oeis.org

17, 19, 24, 26, 32, 33, 35, 36, 37, 38, 40, 42, 43, 47, 50, 51, 52, 58, 62, 63, 64, 76, 77, 78, 79, 90, 91, 93, 95, 121, 123, 124, 125, 126, 134, 135, 137, 150, 153, 185, 186, 187, 188, 189, 201, 203, 213, 218, 219, 238, 239, 259, 263, 278, 279, 289, 293
Offset: 1

Views

Author

Robert Price, Nov 01 2014

Keywords

Comments

See A246782 for a more complete description of this sequence.
a(1136) > 10^12.
It is interesting that three consecutive integers n = 20004097201301075, n + 1 and n + 2 are in the sequence. Conjecture: The sequence is infinite. - Farideh Firoozbakht, Nov 01 2014

Crossrefs

Programs

  • Haskell
    a249566 n = a249566_list !! (n-1)
    a249566_list = filter ((== 4) . a182134) [1..]
    -- Reinhard Zumkeller, Nov 17 2014
  • Mathematica
    np[n_]:=(a = Prime[n]; b = a^(1 + 1/n); Length[Select[Range[a+1,b], PrimeQ]]); Do[If[np[n] == 4,Print[n]], {n, 293}]
    np[n_]:=(a = Prime[n]; b = a^(1 + 1/n); Length[Select[Range[a+1,b], PrimeQ]]); Select[Range[293], np[#]==4&] (* Farideh Firoozbakht, Nov 01 2014 *)
  • PARI
    for(n=1,9e9,primepi(prime(n)^(1+1/n))-n==4&&print1(n",")) \\ M. F. Hasler, Nov 03 2014
    
Showing 1-6 of 6 results.