A246784 Numbers n such that both n and n+1 are in the sequence A246782.
5, 6, 9, 10, 14, 22, 28, 29, 45, 216, 714573709895
Offset: 1
Extensions
a(11) from Robert Price, Nov 15 2014
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(25) = 5, because p(25) = 97 and there are 5 primes p such that 97 < p < 97^(1 + 1/25) = 121.9299290...: 101, 103, 107, 109, 113.
a182134 = length . a244365_row -- Reinhard Zumkeller, Nov 16 2014
a:= n-> numtheory[pi](ceil(ithprime(n)^(1+1/n))-1)-n: seq(a(n), n=1..100); # Alois P. Heinz, Apr 21 2012
Table[i = Prime[n] + 1; j = Floor[Prime[n]^(1 + 1/n)]; Length[Select[Range[i, j], PrimeQ]], {n, 100}] (* T. D. Noe, Apr 21 2012 *) f[n_] := PrimePi[ Prime[n]^(1 + 1/n)] - n; Array[f, 105] (* Robert G. Wilson v, Feb 20 2015 *)
A182134(n)=primepi(prime(n)^(1+1/n))-n \\ M. F. Hasler, Nov 03 2014
from sympy import primepi, prime def a(n): return primepi(prime(n)**(1 + 1/n)) - n # Indranil Ghosh, Apr 23 2017
a245396 n = a244365 n (a182134 n) -- Reinhard Zumkeller, Nov 16 2014
seq(prevprime(ceil(ithprime(n)^(1+1/n))),n=1..100); # Robert Israel, Nov 03 2014
Table[NextPrime[Prime[n]^(1 + 1/n), -1], {n, 64}] (* Farideh Firoozbakht, Nov 03 2014 *)
a(n)=precprime(prime(n)^(1+1/n))
a(n)=precprime(sqrtnint(prime(n)^(n+1),n)) \\ Charles R Greathouse IV, Oct 29 2018
12 is in the sequence since there exists only three primes p where, prime(12) < p < prime(12)^(1 + 1/12). Note that prime(12) = 37, 37^(1 + 1/12) ~ 49.99 and 37 < 41 < 43 < 47 < 49.99.
a246781 n = a246781_list !! (n-1) a246781_list = filter ((== 3) . a182134) [1..] -- Reinhard Zumkeller, Nov 17 2014
N:= 10^5: # to get all terms where prime(n)^(1+1/n) < N Primes:= select(isprime,[2,seq(2*i+1,i=1..floor((N+1)/2))]): filter:= proc(n) local t; t:= Primes[n]^(n+1); Primes[n+3]^n <= t and Primes[n+4]^n > t end proc: select(filter, [$1..nops(Primes)-4]); # Robert Israel, Mar 23 2015
np[n_] := (a = Prime[n]; b = a^(1 + 1/n); Length[Select[Range[a + 1, b], PrimeQ]]); Select[Range[10000], np[#] == 3 &]
a(6) = 55 since the number of primes p such that prime(55) < p < prime(55)^(1 + 1/55) is 6 and 55 is the smallest number with this property.
np[n_]:=(b=Prime[n]; Length[Select[Range[b+1, b^(1 + 1/n)],PrimeQ]]); a[n_]:=(For[m=1, np[m] !=n, m++]; m); Do[Print[a[n]], {n, 37}]
a249566 n = a249566_list !! (n-1) a249566_list = filter ((== 4) . a182134) [1..] -- Reinhard Zumkeller, Nov 17 2014
np[n_]:=(a = Prime[n]; b = a^(1 + 1/n); Length[Select[Range[a+1,b], PrimeQ]]); Do[If[np[n] == 4,Print[n]], {n, 293}] np[n_]:=(a = Prime[n]; b = a^(1 + 1/n); Length[Select[Range[a+1,b], PrimeQ]]); Select[Range[293], np[#]==4&] (* Farideh Firoozbakht, Nov 01 2014 *)
for(n=1,9e9,primepi(prime(n)^(1+1/n))-n==4&&print1(n",")) \\ M. F. Hasler, Nov 03 2014
Comments