A246782 Numbers k such that A182134(k)=2, i.e., there exist only two primes p with prime(k) < p < prime(k)^(1+1/k).
5, 6, 7, 9, 10, 11, 14, 15, 22, 23, 28, 29, 30, 45, 46, 61, 66, 216, 217, 367, 3793, 1319945, 1576499, 8040877, 17567976, 44405858, 445538764, 1478061204, 3643075047, 17440041685, 190836014732, 714573709895, 714573709896
Offset: 1
Examples
5 is in the sequence since there exists only two primes p, prime(5) < p < prime(5)^(1+1/5). Note that prime(5) = 11, 11^(1+1/5) ~ 17.77 and 11 < 13 < 17 < 17.77.
Links
- A. Kourbatov, Verification of the Firoozbakht conjecture for primes up to four quintillion, arXiv:1503.01744 [math.NT], 2015
- Wikipedia, Firoozbakht's conjecture
Programs
-
Haskell
a246782 n = a246782_list !! (n-1) a246782_list = filter ((== 2) . a182134) [1..] -- Reinhard Zumkeller, Nov 17 2014
-
Mathematica
np[n_]:=(a = Prime[n]; b = a^(1 + 1/n); Length[Select[Range[a+1,b], PrimeQ]]); Do[If[np[n] == 2,Print[n]], {n, 25000000}]
-
PARI
for(n=1,oo,2==primepi(prime(n)^(1+1/n))-n&&print1(n", ")) \\ M. F. Hasler, Nov 03 2014
Extensions
a(26)-a(27) from Robert Price, Oct 24 2014
a(28)-a(33) from Robert Price, Nov 01 2014
Comments