A246800 Even-indexed terms of A247984, a sequence motivated by generalized quadrangles.
6, 10, 84, 186, 1276, 3172, 19816, 52666, 310764, 863820, 4899736, 14073060, 77509464, 228318856, 1228859344, 3693886906, 19513475404, 59644341436, 310223170744, 961665098956, 4936304385544, 15488087080696, 78602174905264, 249227373027556, 1252310513280376, 4007681094422392, 19961337935130096, 64408903437167496, 318297642651252784, 1034656923041985552
Offset: 1
Links
- V. Dmytrenko, F. Lazebnik, and J. Williford, On monomial graphs of girth eight, Finite Fields and Their Applications 13 (2007), 828-842.
- Brian G. Kronenthal, Monomial Graphs and Generalized Quadrangles, Finite Fields and Their Applications, 18 (2012), 674-684.
- B. G. Kronenthal, An Integer Sequence Motivated by Generalized Quadrangles, Journal of Integer Sequences, 2015, Vol. 18. #15.7.8.
Crossrefs
Equals even-indexed terms of A247984.
Programs
-
Magma
[2^(2*n)-(-1)^n*Binomial(2*n, n) : n in [1..30]]; // Wesley Ivan Hurt, Nov 15 2014
-
Maple
A246800:=n->2^(2*n)-(-1)^n*binomial(2*n, n): seq(A246800(n), n=1..30); # Wesley Ivan Hurt, Nov 15 2014
-
Mathematica
For[n=1,n<31,n++,Print[2^(2*n)-(-1)^(n)*Binomial[2n,n]]]
Formula
a(n) = 2^(2n) - (-1)^n * binomial(2n, n).
n*(4*n-5)*a(n) +2*(-4*n+3)*a(n-1) -8*(4*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Jun 09 2018
Comments