cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A247984 Constant terms of congruences derived from a permutation polynomial motivated by generalized quadrangles.

Original entry on oeis.org

2, 6, 8, 10, 32, 84, 128, 186, 512, 1276, 2048, 3172, 8192, 19816, 32768, 52666, 131072, 310764, 524288, 863820, 2097152, 4899736, 8388608, 14073060, 33554432, 77509464, 134217728, 228318856, 536870912, 1228859344, 2147483648
Offset: 1

Views

Author

Brian G. Kronenthal, Sep 28 2014

Keywords

Comments

Let p be an odd prime, let e be a positive integer, and let q = p^e. Dmytrenko, Lazebnik, and Williford (2007) proved that every monomial graph of girth at least eight is isomorphic to G = G_q(xy, x^ky^(2k)) for some integer k which is not divisible by p. If q = 3, then G is isomorphic to G_3(xy, xy^2). If q >= 5, then F(x) = ((x + 1)^(2k) - 1)x^(q - 1 - k) - 2x^(q - 1) is a permutation polynomial, in which case the Hermite-Dickson Criterion implies that the coefficient at x^(q - 1) in F(x)^n must equal 0 modulo p. a(n) is the constant term of the coefficient at x^(q - 1) in F(x)^n; this was first stated in Kronenthal (2012). The provided Mathematica program produces the first 30 terms of the sequence.

Crossrefs

Cf. A246800.

Programs

  • Maple
    A247984 := proc(n)
        if type(n,'odd') then
            2^n;
        else
            2^n-(-1)^(n/2)*binomial(n, n/2) ;
        end if;
    end proc: # R. J. Mathar, Jun 09 2018
  • Mathematica
    For[n = 1, n < 31, n++, Piecewise[{{Print[2^n - (-1)^(n/2) * Binomial[n, n/2]], EvenQ[n]}, {Print[2^n], OddQ[n]}}]]
    Rest[With[{nn = 50}, CoefficientList[Series[Exp[2*x] - BesselJ[0, 2*x], {x, 0, nn}], x]*Range[0, nn]!]] (* G. C. Greubel, Aug 16 2017 *)
  • PARI
    a(n) = if (n % 2, 2^n, 2^n - (-1)^(n/2)*binomial(n, n/2)); \\ Michel Marcus, Oct 01 2014

Formula

a(n) = 2^n when n is odd and a(n) = 2^n - (-1)^(n/2)*binomial(n, n/2) when n is even.
From Robert Israel, Oct 01 2014: (Start)
G.f.: 1/(1-2*x) - 1/sqrt(1+4*x^2).
E.g.f.: exp(2*x) - J_0(2*x) where J_0 is a Bessel function. (End)
n*(2*n-3)*a(n) -2*(2*n-1)*(n-1)*a(n-1) +4*(n-1)*(2*n-3)*a(n-2) -8*(2*n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Jun 09 2018
Showing 1-1 of 1 results.