Brian G. Kronenthal has authored 4 sequences.
A346448
Number of nontrivial disconnected induced K_{1,3}-saturated graphs on n vertices.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 1, 11, 88, 620
Offset: 0
A336764
Maximum number of order 3 subsquares in a Latin square of order n.
Original entry on oeis.org
0, 0, 1, 0, 0, 4, 7
Offset: 1
- R. Bean, Critical sets in Latin squares and Associated Structures, Ph.D. Thesis, The University of Queensland, 2001.
- K. Heinrich and W. Wallis, The Maximum Number of Intercalates in a Latin Square, Combinatorial Math. VIII, Proc. 8th Australian Conf. Combinatorics, 1980, 221-233.
- I. M. Wanless, Latin Squares with One Subsquare, Journal of Combinatorial Designs, 9 (2001), 128-146.
A246800
Even-indexed terms of A247984, a sequence motivated by generalized quadrangles.
Original entry on oeis.org
6, 10, 84, 186, 1276, 3172, 19816, 52666, 310764, 863820, 4899736, 14073060, 77509464, 228318856, 1228859344, 3693886906, 19513475404, 59644341436, 310223170744, 961665098956, 4936304385544, 15488087080696, 78602174905264, 249227373027556, 1252310513280376, 4007681094422392, 19961337935130096, 64408903437167496, 318297642651252784, 1034656923041985552
Offset: 1
- V. Dmytrenko, F. Lazebnik, and J. Williford, On monomial graphs of girth eight, Finite Fields and Their Applications 13 (2007), 828-842.
- Brian G. Kronenthal, Monomial Graphs and Generalized Quadrangles, Finite Fields and Their Applications, 18 (2012), 674-684.
- B. G. Kronenthal, An Integer Sequence Motivated by Generalized Quadrangles, Journal of Integer Sequences, 2015, Vol. 18. #15.7.8.
Equals even-indexed terms of
A247984.
-
[2^(2*n)-(-1)^n*Binomial(2*n, n) : n in [1..30]]; // Wesley Ivan Hurt, Nov 15 2014
-
A246800:=n->2^(2*n)-(-1)^n*binomial(2*n, n): seq(A246800(n), n=1..30); # Wesley Ivan Hurt, Nov 15 2014
-
For[n=1,n<31,n++,Print[2^(2*n)-(-1)^(n)*Binomial[2n,n]]]
A247984
Constant terms of congruences derived from a permutation polynomial motivated by generalized quadrangles.
Original entry on oeis.org
2, 6, 8, 10, 32, 84, 128, 186, 512, 1276, 2048, 3172, 8192, 19816, 32768, 52666, 131072, 310764, 524288, 863820, 2097152, 4899736, 8388608, 14073060, 33554432, 77509464, 134217728, 228318856, 536870912, 1228859344, 2147483648
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- V. Dmytrenko, F. Lazebnik, and J. Williford, On monomial graphs of girth eight, Finite Fields and Their Applications 13 (2007), 828-842.
- Brian G. Kronenthal, Monomial Graphs and Generalized Quadrangles, Finite Fields and Their Applications, 18 (2012), 674-684.
- B. G. Kronenthal, An Integer Sequence Motivated by Generalized Quadrangles, Journal of Integer Sequences, 2015, Vol. 18. #15.7.8.
-
A247984 := proc(n)
if type(n,'odd') then
2^n;
else
2^n-(-1)^(n/2)*binomial(n, n/2) ;
end if;
end proc: # R. J. Mathar, Jun 09 2018
-
For[n = 1, n < 31, n++, Piecewise[{{Print[2^n - (-1)^(n/2) * Binomial[n, n/2]], EvenQ[n]}, {Print[2^n], OddQ[n]}}]]
Rest[With[{nn = 50}, CoefficientList[Series[Exp[2*x] - BesselJ[0, 2*x], {x, 0, nn}], x]*Range[0, nn]!]] (* G. C. Greubel, Aug 16 2017 *)
-
a(n) = if (n % 2, 2^n, 2^n - (-1)^(n/2)*binomial(n, n/2)); \\ Michel Marcus, Oct 01 2014
Comments