A152242 Integers formed by concatenating primes.
2, 3, 5, 7, 11, 13, 17, 19, 22, 23, 25, 27, 29, 31, 32, 33, 35, 37, 41, 43, 47, 52, 53, 55, 57, 59, 61, 67, 71, 72, 73, 75, 77, 79, 83, 89, 97, 101, 103, 107, 109, 112, 113, 115, 117, 127, 131, 132, 133, 135, 137, 139, 149, 151, 157, 163, 167, 172, 173, 175, 177, 179
Offset: 1
Examples
101 is a member since it is prime; 303 is not since it is composite and 30 is also not a prime.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Henri Picciotto, Selected Integer Sequences
Programs
-
PARI
is_A152242(n)=/* If n is even, the last digit must be 2 and [n\10] (if nonzero) must be in this sequence. (This check is not necessary but improves speed.) */ bittest(n,0) || return( n%10==2 && (n<10 || is_A152242(n\10))); isprime(n) && return(1); for(i=1,#Str(n)-1, n%10^i>10^(i-1) && isprime( n%10^i ) && is_A152242( n\10^i) && return(1)) \\ M. F. Hasler, Oct 15 2009; edited Oct 16 2009, to disallow leading zeros
-
Python
from sympy import isprime def ok(n): if isprime(n): return True s = str(n) return any(s[i]!="0" and isprime(int(s[:i])) and ok(int(s[i:])) for i in range(1, len(s))) print([k for k in range(180) if ok(k)]) # Michael S. Branicky, Sep 01 2024
Extensions
More terms from M. F. Hasler and Zak Seidov, Oct 15 2009
Comments