cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A166505 Numbers in A166504 which are not in A152242.

Original entry on oeis.org

202, 203, 205, 207, 302, 303, 305, 502, 505, 507, 702, 703, 705, 707, 1102, 1105, 1107, 1302, 1305, 1702, 1703, 1705, 1707, 1902, 1903, 1905, 2002, 2005, 2007, 2013, 2019, 2022, 2023, 2025, 2031, 2032, 2033, 2035, 2037, 2041, 2043, 2047, 2052, 2055, 2057
Offset: 1

Views

Author

M. F. Hasler, Nov 02 2009

Keywords

Comments

All terms have at least one zero digit and are composite.

Crossrefs

Cf. A152242, A166506 (indices of these terms in A166504).

Programs

Formula

a(n) = A166504(A166506(n))

Extensions

Edited by Charles R Greathouse IV, Apr 23 2010

A166506 Indices of terms in A166504 which are not in A152242.

Original entry on oeis.org

70, 71, 72, 73, 115, 116, 117, 183, 185, 186, 250, 251, 252, 253, 365, 367, 368, 427, 429, 534, 535, 536, 537, 594, 595, 596, 640, 642, 643, 645, 647, 648, 649, 650, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 669, 671, 672, 673, 674
Offset: 1

Views

Author

M. F. Hasler, Nov 02 2009

Keywords

Examples

			a(1)=70 since the first term in A166504 which is not in A152242 is A166504(70)=202.
		

Crossrefs

Programs

  • PARI
    c=0; for(i=1,1e4, is_A166504(i) & c++ & !is_A152242(i) & print1(c", "))

Formula

A166504(a(n)) = A166505(n).

A165631 Numbers whose cube is a concatenation of primes, i.e., in A152242.

Original entry on oeis.org

3, 7, 9, 11, 13, 15, 17, 18, 27, 28, 29, 31, 33, 38, 39, 45, 47, 48, 49, 53, 55, 58, 59, 61, 63, 68, 71, 73, 75, 83, 85, 88, 91, 95, 98, 103, 108, 111, 113, 117, 121, 125, 127, 131, 133, 135, 137, 138, 148, 153, 157, 159, 161, 163, 167, 168, 173, 175, 177, 178, 179
Offset: 1

Views

Author

Zak Seidov and M. F. Hasler, Oct 16 2009

Keywords

Crossrefs

Programs

  • PARI
    for(n=1,999, is_A152242(n^3) & print1(n", "))

Extensions

Edited by Charles R Greathouse IV, Apr 24 2010

A019549 Primes formed by concatenating other primes.

Original entry on oeis.org

23, 37, 53, 73, 113, 137, 173, 193, 197, 211, 223, 227, 229, 233, 241, 257, 271, 277, 283, 293, 311, 313, 317, 331, 337, 347, 353, 359, 367, 373, 379, 383, 389, 397, 433, 523, 541, 547, 557, 571, 577, 593, 613, 617, 673, 677, 719, 727, 733, 743, 757, 761, 773, 797, 977
Offset: 1

Views

Author

R. Muller

Keywords

Examples

			113 is member as 11 and 3 are primes.
a(12)=227 = "2"+"2"+"7" is the first term not in A105184 (restricted to concatenation of two primes). [_M. F. Hasler_, Oct 15 2009]
		

Crossrefs

Programs

  • PARI
    is_A019549(n, recurse=0)={ isprime(n) == recurse & return(recurse); for(i=1, #Str(n)-1, isprime( n%10^i ) & is_A019549( n\10^i, 1) & n\10^(i-1)%10 & return(1)) } \\ M. F. Hasler, Oct 15 2009
    
  • Python
    from sympy import isprime
    def c(n, m):
        if m > 0 and isprime(n): return True
        s = str(n)
        return any(s[i]!="0" and isprime(int(s[:i])) and c(int(s[i:]), m+1) for i in range(1, len(s)))
    def ok(n): return isprime(n) and c(n, 0)
    print([k for k in range(978) if ok(k)]) # Michael S. Branicky, Sep 01 2024

A038692 Square numbers that are concatenations of two or more prime numbers.

Original entry on oeis.org

25, 225, 289, 361, 529, 729, 2401, 2601, 2809, 4761, 5329, 5929, 7225, 7569, 11449, 11881, 13225, 15129, 19881, 21609, 22801, 23409, 24649, 25281, 26569, 27225, 29241, 29929, 31329, 32761, 34969, 36481, 39601, 47961, 52441, 53361, 54289, 55225, 57121, 58081
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A166503 (the square roots).

Programs

  • Mathematica
    ric[d_] := PrimeQ@ FromDigits@ d || AnyTrue[ TakeDrop[d, #] & /@ Range[ Length[d] - 1], #[[2,1]] > 0 && PrimeQ@ FromDigits@ #[[1]] && ric@ #[[2]] &]; ok[n_] := If[ EvenQ[n] && Mod[n, 10] != 2, False, ric@ IntegerDigits@ n]; Select[ Range[300]^2, ok] (* Giovanni Resta, Mar 16 2020 *)
  • PARI
    forstep(n=1, 300, 2, is_A152242(n^2) & print1(n^2, ", ")) \\ M. F. Hasler, Mar 19 2012

Formula

A038692(n) = A166503(n)^2. As a set, A038692 = A000290 intersection A152242 = A016754 intersection A152242. - M. F. Hasler, Mar 19 2012

Extensions

Edited by N. J. A. Sloane, Oct 18 2009, incorporating corrections from M. F. Hasler and Zak Seidov.

A166504 Slime numbers: numbers which are the concatenation of primes, with "leading zeros" allowed.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 22, 23, 25, 27, 29, 31, 32, 33, 35, 37, 41, 43, 47, 52, 53, 55, 57, 59, 61, 67, 71, 72, 73, 75, 77, 79, 83, 89, 97, 101, 103, 107, 109, 112, 113, 115, 117, 127, 131, 132, 133, 135, 137, 139, 149, 151, 157, 163, 167, 172, 173, 175, 177, 179
Offset: 1

Views

Author

M. F. Hasler, Nov 02 2009

Keywords

Comments

A number is in this sequence if and only if it is prime or of the form a(k)*10^m+a(n), where a(k), a(n) are in this sequence and 10^m >= a(n) (and from this follows that one among a(k), a(n) can be taken to be prime).
This contains A152242 as a subsequence, but also additional terms like e.g. 202 which can be split into two primes, 2 and 02 (= 2). Such a splitting, where some of the substrings contain leading zeros, is not allowed in A152242.
Terms not in A152242 are listed in A166505.

Crossrefs

Cf. A152242 (no leading zeros allowed).
Cf. A085823 (super-slimes: all substrings are prime). - Henri Picciotto, Apr 01 2015

Programs

  • PARI
    is_A166504(n)={ isprime(n) || ((bittest(n,0) || n%10==2) & for(i=1,#Str(n)-1, isprime(n%10^i) & is_A166504(n\10^i) & return(1)))}
    
  • PARI
    is(n)=if(isprime(n),return(1));if(n<202,return(isprime(n%10)&&isprime(n\10)));my(k=n%10,v);if(k==5||k==2,return(if(n<6,1,n\=10;has(n/10^valuation(n,10)))));if(k%2==0,return(0));v=digits(n);for(i=1,#v,if(isprime(n%10^i)&&is(n\10^i),return(1)));0 \\ Charles R Greathouse IV, Apr 30 2013

Extensions

Edited by Charles R Greathouse IV, Apr 23 2010
Name "Slime numbers", after Henri Picciotto, added by N. J. A. Sloane, Mar 25 2015

A066737 Composite numbers that are concatenations of primes.

Original entry on oeis.org

22, 25, 27, 32, 33, 35, 52, 55, 57, 72, 75, 77, 112, 115, 117, 132, 133, 135, 172, 175, 177, 192, 195, 213, 217, 219, 222, 225, 231, 232, 235, 237, 243, 247, 252, 253, 255, 259, 261, 267, 272, 273, 275, 279, 289, 292, 295, 297, 312, 315, 319, 322, 323, 325
Offset: 1

Views

Author

Joseph L. Pe, Jan 15 2002

Keywords

Examples

			72 is the concatenation of primes 7 and 2. 132 is the concatenation of primes 13 and 2. 225 is the concatenation of 2, 2 and 5.
		

Crossrefs

Cf. A121609.

Programs

  • Maple
    ccat:= proc(m,n) 10^(1+ilog10(n))*m+n end proc:
    C[1]:= {2,3,5,7}: P[1]:=C[1]:
    for n from 2 to 3 do
      P[n]:= select(isprime, {seq(i,i=10^(n-1)+1..10^n-1,2)});
      C[n]:= P[n];
      for m from 1 to n-1 do
        C[n]:= C[n] union {seq(seq(ccat(p,q),p =P[m]),q=C[n-m])};
      od
    od:
    seq(op(sort(convert(remove(isprime,C[n]),list))),n=1..3); # Robert Israel, Jan 22 2020
  • PARI
    for(n=1,999, !isprime(n) && is_A152242(n) && print1(n", ")) \\ M. F. Hasler, Oct 16 2009

Formula

A066737 = A152242 \ A000040 = A152242 intersect A002808. - M. F. Hasler, Oct 16 2009

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 03 2002
Missing terms added by M. F. Hasler, Oct 16 2009

A166503 Numbers k with property that k^2 is the concatenation of two or more prime numbers.

Original entry on oeis.org

5, 15, 17, 19, 23, 27, 49, 51, 53, 69, 73, 77, 85, 87, 107, 109, 115, 123, 141, 147, 151, 153, 157, 159, 163, 165, 171, 173, 177, 181, 187, 191, 199, 219, 229, 231, 233, 235, 239, 241, 243, 267, 269, 277, 279, 281, 289, 299, 319, 327, 331, 335, 337, 343, 357
Offset: 1

Views

Author

Zak Seidov, Oct 15 2009

Keywords

Comments

Only odd numbers are eligible.

Crossrefs

Programs

Formula

a(n) = sqrt(A038692(n)).

Extensions

Terms updated according to stricter definition of A152242 by M. F. Hasler, Oct 15 2009

A167459 Composite numbers in A166504, i.e., whose decimal expansion can be split up into prime numbers, with leading zeros allowed.

Original entry on oeis.org

22, 25, 27, 32, 33, 35, 52, 55, 57, 72, 75, 77, 112, 115, 117, 132, 133, 135, 172, 175, 177, 192, 195, 202, 203, 205, 207, 213, 217, 219, 222, 225, 231, 232, 235, 237, 243, 247, 252, 253, 255, 259, 261, 267, 272, 273, 275, 279, 289, 292, 295, 297, 302, 303
Offset: 1

Views

Author

M. F. Hasler, Nov 19 2009

Keywords

Comments

In contrast to A066737 (which is a subsequence of this one), we allow for leading zeros in the "prime" substrings; the two sequences differ from n=24 on, with a(24)=202 which is not in A066737.
Sequence A166505 gives the difference, A167459 \ A066737 = A166504 \ A152242. Sequence A167458 gives the indices of the terms not in A066737.

Crossrefs

Programs

Formula

A167459 = A002808 n A166504, where "n" means intersection.

A381259 Numbers obtained by concatenating powers of 2, sorted into increasing order.

Original entry on oeis.org

1, 2, 4, 8, 11, 12, 14, 16, 18, 21, 22, 24, 28, 32, 41, 42, 44, 48, 64, 81, 82, 84, 88, 111, 112, 114, 116, 118, 121, 122, 124, 128, 132, 141, 142, 144, 148, 161, 162, 164, 168, 181, 182, 184, 188, 211, 212, 214, 216, 218, 221, 222, 224, 228, 232, 241, 242, 244, 248, 256, 264
Offset: 1

Views

Author

Stefano Spezia, Feb 18 2025

Keywords

Comments

Take the list {2^i: i >= 0} and concatenate its terms (allowing multiple copies) in any order; then sort the result into increasing order.
The term a(32) = 128 is a power of 2 as well as the concatenation of several powers of 2. - Rémy Sigrist, Feb 20 2025

Examples

			11 is a term because it is the concatenation of 1 = 2^0 with itself;
12 is a term because it is the concatenation of 1 = 2^0 with 2 = 2^1;
32 is a term because it is equal to 2^5;
168 is a term because it is the concatenation of 16 = 2^4 with 8 = 2^3.
0 is not a term because it is not a power of 2.
		

Crossrefs

Supersequence of A028846.
Some subsequences: A000079, A045507, A178664.
Cf. A152242.

Programs

  • PARI
    \\ See Links section.
Showing 1-10 of 13 results. Next